• Internalization Dissociates b2-Adrenergic Receptors

      Lan, Tien-Hung; Kuravi, Sudhakiranmayi; Lambert, Nevin A.; Department of Pharmacology and Toxicology (2011-02-22)
      G protein-coupled receptors (GPCRs) self-associate as dimers or higher-order oligomers in living cells. The stability of associated GPCRs has not been extensively studied, but it is generally thought that these receptors move between the plasma membrane and intracellular compartments as intact dimers or oligomers. Here we show that b2-adrenergic receptors (b2ARs) that self-associate at the plasma membrane can dissociate during agonist-induced internalization. We use bioluminescence-resonance energy transfer (BRET) to monitor movement of β2ARs between subcellular compartments. BRET between b2ARs and plasma membrane markers decreases in response to agonist activation, while at the same time BRET between b2ARs and endosome markers increases. Energy transfer between b2ARs is decreased in a similar manner if either the donor- or acceptor-labeled receptor is mutated to impair agonist binding and internalization. These changes take place over the course of 30 minutes, persist after agonist is removed, and are sensitive to several inhibitors of arrestin- and clathrin-mediated endocytosis. The magnitude of the decrease in BRET between donor- and acceptor-labeled b2ARs suggests that at least half of the receptors that contribute to the BRET signal are physically segregated by internalization. These results are consistent with the possibility that b2ARs associate transiently with each other in the plasma membrane, or that b2AR dimers or oligomers are actively disrupted during internalization.
    • NF-Y Recruits Both Transcription Activator and Repressor to Modulate Tissue- and Developmental Stage-Specific Expression of Human γ-Globin Gene

      Zhu, Xingguo; Wang, Yongchao; Pi, Wenhu; Liu, Hui; Wickrema, Amittha; Tuan, Dorothy; Department of Biochemistry and Molecular Biology (2012-10-10)
      The human embryonic, fetal and adult β-like globin genes provide a paradigm for tissue- and developmental stage-specific gene regulation. The fetal γ-globin gene is expressed in fetal erythroid cells but is repressed in adult erythroid cells. The molecular mechanism underlying this transcriptional switch during erythroid development is not completely understood. Here, we used a combination of in vitro and in vivo assays to dissect the molecular assemblies of the active and the repressed proximal γ-globin promoter complexes in K562 human erythroleukemia cell line and primary human fetal and adult erythroid cells. We found that the proximal γ-globin promoter complex is assembled by a developmentally regulated, general transcription activator NF-Y bound strongly at the tandem CCAAT motifs near the TATA box. NF-Y recruits to neighboring DNA motifs the developmentally regulated, erythroid transcription activator GATA-2 and general repressor BCL11A, which in turn recruit erythroid repressor GATA-1 and general repressor COUP-TFII to form respectively the NF-Y/GATA-2 transcription activator hub and the BCL11A/COUP-TFII/GATA-1 transcription repressor hub. Both the activator and the repressor hubs are present in both the active and the repressed γ-globin promoter complexes in fetal and adult erythroid cells. Through changes in their levels and respective interactions with the co-activators and co-repressors during erythroid development, the activator and the repressor hubs modulate erythroid- and developmental stage-specific transcription of γ-globin gene.