SOUTHERN

MEDICAL AND SURGICAL JOURNAL.

EDITED BY

PAUL F. EVE, M. D.,
PROFESSOR OF SURGERY IN THE MEDICAL COLLEGE OF GEORGIA,
AND ONE OF THE VICE-PRESIDENTS OF THE
NATIONAL MEDICAL ASSOCIATION.

VOL. IV.—1848.—NEW SERIES.

Augusta, Ga.
JAMES McCAFFERTY,
PRINTER AND PUBLISHER.

1848.
When we reflect upon the organization of man, and observe the play of the vital forces, as displayed in the functional activity of organs, producing assimilation, secretion and excretion; when we observe the muscular development, indicative of strength; and the nervous system rendering the man capable of perceiving the impressions of external agents; we are naturally led to make an inquiry into those causes which maintain this action when once established. In this investigation, the speculative mind of man has been long diligently engaged, and the important facts which have been elicited by this scrutinizing inquiry, have served as the basis upon which to build the theory of disease. To the medical philosopher, the study of man in the healthy state is all important: unless he knows what it is that constitutes health, he can never have a correct idea of disease. Health is a term which admits of no explicit definition—it is only a word expressive of the aggregate condition of organs; disease is a term expressive of the same, and none can have correct ideas of the latter without a full understanding of the former. Thus we account for the thousand theories of disease which have had their day, and thus we account for the rejection of hundreds, which in times past have been regarded by their advocates as the only safe theory by which to be guided in medical practice. The Science of Physiology being still progressive, many theories which are now the reigning favorites, will become supplant-
ed by others, which will be based upon the future discoveries of physiologists. But, because this is so, need we now fold our arms and do nothing? The advancement of the medical sciences should not be left to physiologists alone; but it becomes us who are more intimately connected with medical practice, to make the best use of the light which has been already given us. Perfection is not yet to be attained in Medicine; but he, who does not exert himself to establish that practice, which he believes to be in accordance with the present state of physiological science, does not discharge his duty to his profession or to his country.

All agents, innocuous or morbid, can act upon the human system only through the intervention of a perceptive medium; and as this perceptive faculty is universally assigned by physiologists to the nervous system, we must look upon that system as being primarily disordered in every form of disease. That the intervention of this perceptive medium is absolutely necessary, is a point, which might be assumed as a known fact, and passed over without argument, since none could safely deny its truth; but as upon this point hangs the theory which I shall advocate in this article, it will require more than a passing notice. Perception is a fundamental requisite of existence; the divine spark of life itself cannot animate our bodies without the intervention of this principle, for without perception of its presence, could animation result? The food which we receive into our stomach would not answer the purpose intended; nor the medicine we take in sickness, nor the cooling draught to allay our thirst, unless that organ perceived its presence. Without perception, the ideas of light, colors, beauty or deformity, could never have entered our minds; the sense of taste could never exist; in short, without perception, nothing could have been created, for chaos itself perceived the power of the Almighty, and the ultimate elements of the organic and inorganic creations hastened to dispose themselves at his command.

It being universally admitted that the nervous system is the medium through which the impressions of all external agents are perceived, it is unnecessary to dwell longer upon this point, and therefore the important subject of Irritation will be at once taken up. Any attempt to give a concise and explicit definition
of the term Irritation would likely end in nothing satisfactory, since the constitutional disturbances produced by different irritants vary a great deal; antimonials, alcoholic drinks, and narcotics, produce a series of symptoms peculiar to each, and it is this difference in the constitutional effects of different irritants that produces variety in diseases. The disturbances produced in the system, by any irritant, will be in proportion to the force of the impression: a moderate light gives us pleasure, but the glare of the mid-day sun gives us pain, and even deprives us of sight; the sound of sweet music is enchanting, but the filing of a mill-saw is extremely unpleasant. All agents capable of making an impression upon the system, or any part of the nervous system, are irritants, strictly speaking, though that term is usually applied to morbidic agents. Sight, hearing, taste and touch, are all instances of irritation, though not morbidic; the agents producing these various sensations are all irritants, their impressions being recognized by that perceptive faculty with which the nervous system is endowed. The peculiar effect of these irritants on the nervous tissue itself, the particular changes which it undergoes in order to convey distinct ideas to the mind, are utterly incomprehensible. And this is the case with those more potent irritants—those capable of producing serious constitutional disturbances. We can readily detect the existence of irritation, but we cannot define its intimate nature. The agent makes its impressions, the nervous tissue perceives that impression, irritation is the manifestation of that impression and the constitutional effects are the result of the irritation.

As a general rule, the effects of each individual irritant are so well marked, that it is not likely the cause of the disturbance will be mistaken. The fevers of malarial origin have some fixed characters which serve to distinguish them from all other fevers, though agreeing in many points with others produced by different causes—those fixed characters (to be more explicitly mentioned afterwards) serve to rank them as a distinct class of diseases. The disorders produced by cold and atmospheric vicissitudes have also certain characteristics, by which they can be readily recognized. The peculiar effect of cold upon the nervous tissue and the consequences, will of course receive no consideration here, but the class of diseases are mentioned as
affording corroboration of the remark made above. So in the exanthemata, venereal poison, and those diseases supposed to be propagated by hereditary transmission; in all of these there is little risk of mistaking the cause.

Again, all those substances taken into the body for its nourishment—all those agents which produce the different sensations of touch, smell, &c., and all the appliances made for our comfort, being made perceptible through the intervention of the nervous system, we are led to the conclusion that the nervous system is the avenue to health as well as to disease, and that Health is but the perception of those impressions that are innocuous, whilst disease is the perception of those that are hurtful. There being, in the present state of our knowledge, no other mode to account for the phenomena of health than by supposing the integrity of the nervous system to be unimpaired, it would be unphilosophical to suppose that the phenomena of disease could depend upon any thing else than upon disorder of the same system. We all know the vital importance of a due supply of the nervous current to any organ, and if that nervous current be disordered in any way, can we expect any other result than an irregular action of that organ. Look at the liver—that pet of practitioners—how could its functions be interrupted in any manner other than a disturbance of its nervous supply—the lungs or any other organ. Thus a true theory of disease, to be secure, must be based upon the theory of health, and we are compelled to arrive at the conclusion that irritation is as necessary to health as it is to disease; and that the difference in the two conditions is caused by the difference in the impressions of the irritants. This view would lead us to expect a revolution in medical practice; but this revolution cannot be fully accomplished until the doctrine of nervous irritation can be successfully applied to all classes of disease; that this is already being accomplished, is known by all who keep pace with the progress of the science.

Some irritants produce direct constitutional debility—other, indirect debility. The heat of a Southern climate relaxes the system and exhausts the vital energies, producing indirect debility, and with this loss of tone the mobility of the nervous system is excessively increased. Under these circumstances, a
person exposed to malaria will readily contract fever. The fever is the evidence of the increased mobility of the nervous system, and as this increased excitability is owing to the loss of tone, any treatment other than a soothing and tonic course would be improper.

The particular irritant, the effects of which I propose to discuss, is Malaria. Notwithstanding so much has been written on this subject, the origin of malaria is still involved in obscurity, and as my own observations have led to no discovery of the manner or cause of its generation, I shall pass over this part of the subject very hastily.

The influence of malaria does not appear to be felt at any considerable distance from its source. I have known families to remove but a short distance, three quarters of a mile, from a swamp, abounding in a highly concentrated malaria, who escaped the agues through the whole season, whilst those who still remained on the swamp suffered severely from its attacks. Living in a malarial country, my attention has, of course, been often directed to this question, and my opinion is, that under favorable circumstances as to position and growth of trees, the influence of malaria would be felt only a very short distance from its source. I have strong faith in the healthiness of the pine lands, and provided I could get a forest of pines a quarter of a mile in breadth between the sources of malaria and the family residence, I would have but little fear of the ague.

The particular portion of the nervous system upon which malaria makes its impressions is a question which has been discussed by some; but as I am under the impression that this is a matter of but little practical value I will not attempt its discussion. Dr. Ford has located the seat of irritation in the spinal marrow, but I think the centre is not more affected than the periphery; in short, I am disposed to regard the entire nervous system as affected by it: the constitutional disturbances in many cases being very general—the various organs of the body being more or less disordered. With malaria, as with all other irritants, the effect of the impression is in proportion to its force. We have in the same season, fevers of every grade of severity; and in the same family at the same time, fevers of all the different types. Occasionally the force of the irritant seems spent
upon one organ—at other times, all suffer more or less, and in a
great many cases, no constitutional disturbances of any import-
ance ensue.

The amount of constitutional disturbance resulting from the
impressions made by malaria upon the nervous system, varies
much; difference of type indicating, in a great measure, the
difference in the force of the impressions. Thus, in the remit-
tent type, we observe the greatest amount of disordered action
in the various organs, and in the quartan ague, the least—the
intermediate types presenting a degree of severity intermediate
between those two extremes. In cases, where all the organs
are implicated, and the poison is supposed to be more diffused,
we seldom meet with any symptoms indicative of great danger;
but, on the other hand, where the forces of the poison is con-
centrated upon one organ, as the brain, lungs, stomach or liver, the
patient is in danger of dying from congestion or inflammation.

Inflammation and congestion have both been regarded by
many as symptoms indicative of a variety of fever proceeding
from some other cause than malaria; but observation has serv-
ed, in a great measure, to correct this erroneous opinion. The
term congestion has not been in use very many years as a mark
of distinction between those malignant forms which were once
regarded as purely inflammatory. Local inflammations do now
and then occur in the course of treatment, but it is a matter of
doubt, whether the inflammation proceeds from the treatment,
or whether it is a consequence of irritation of the organ by the
poison which originally caused the fever. The fact that the
intermittent types are seldom or never complicated by local
inflammations, would give authority to the latter conclusion;
but it is a lamentable fact that it does undoubtedly proceed, in
many cases, from medical treatment. Irritability of the stom-
ach can be easily changed to inflammation: so can duodenitis,
Enteritis and colonitis, be produced by the improper treatment
for irritability of those portions of the intestines. Duodenitis
is particularly liable to be produced in this way, as it is upon
this portion of the intestine that calomel exerts its chief influ-
ence; and when we consider the frequency with which patients
are dosed by this mineral, we need not be surprised to find a
slight tenderness of the epigastrium under pressure, change in a
few days to exquisite pain. Strange to say, this tenderness of the epigastrium is regarded by many as an indication for the use of large doses of calomel, and this indication is regarded as still more urgent if the irritation of the duodenum and stomach is sufficient to cause vomiting.

The Remittent fever has been emphatically styled the *Bilious fever*, and is that form of fever which has been heretofore regarded as the disease which calls loudly for calomel in its treatment; but before we adopt this opinion and practice, it is wise to inquire how far it is right. The symptoms of constitutional disturbance which usher in an attack of remittent fever cannot be distinguished, by the closest observers, from those which precede the intermittent. In both cases, we have the languor and sense of weariness, the general and the local pains, the disordered state of the bowels, want of appetite; and these general symptoms continue in both cases about an equal length of time. The chill, at length, supervenes, and in either case, it may be very light or it may be a protracted ague; the fever rises immediately on the subsidence of the chill; the general and local pains which produce so much suffering during the chill, now leave almost entirely, and a new order of symptoms arise; the head aches and the eye is intolerant of much light; the stomach becomes irritable and vomiting of almost every thing taken into that organ ensues; the thirst is great, and if much drink is taken the vomiting is sure to be increased. Biliary matter is now thrown up, indicating that the contents of the duodenum have been forced backwards into the stomach: this series of symptoms will continue for several hours, and then, with the decline of the fever, they all disappear. Until the decline of the fever, no one can tell whether it will be a remittent or intermittent; or if the fever is determined to be an intermittent by the complete apyrexia, who can determine the type before the next paroxysm ensues? Thus, the symptoms being the same in both forms of fever until the declension of the paroxysm, we have the best of reasons for concluding that the two forms of fever, remittent and intermittent, are produced by the same cause; and that the essential difference between the two—viz., in one a complete apyrexia between paroxysms, and in the other a remission of all the symptoms—is caused by the difference in the
force of the impressions made upon the system by the morbific agent; and, as before stated, the constitutional disturbances in the remittent form of fever, must necessarily be greater for that reason, than in the intermittent. These disturbances are manifested in the deranged condition of the organs, and as the liver must of course participate in this general disturbance, and as this participation is made more manifest by its accidental location, and its peculiar secretion oftener seen during the fever, than in health, it was supposed that its disordered action was the cause of the fever. This opinion being promulgated by the physicians of former days, the notion is now prevalent among the more illiterate that the bile is a most virulent poison, and consequently whenever they vomit bile in any form of disease it is an evidence that it is a disordered secretion from the liver, not knowing that the liver normally secretes bile, and that its presence in the matters ejected from the stomach is owing merely to the inverted peristaltic action. Bile is always present in the upper portions of the intestines in considerable quantities; and this quantity is well known to be increased by the pressure made upon the liver by the muscles concerned in vomiting. This being so, can we not now account for the quantities of bile we often see discharged by vomiting? The more we vomit the more bile will be discharged; the quantity then is not to be taken into consideration at all, except as an evidence of the fact that in consequence of extreme irritability of the stomach, there has been a great deal of vomiting.

Again, the discharges from the bowels are watched with the greatest solicitude, and if a purgative has been administered, all the bile in the upper portions of the intestine which escaped ejection by vomiting, will most likely be found in the discharges per anum. This circumstance, instead of being thus rationally accounted for, is looked upon as a strong confirmation of a disordered liver. Calomel is now administered, and as this mineral irritates the duodenum very much, this irritation extends along the bile-ducts to the liver; for the duodenum is that portion of the intestine into which the liver discharges its secretion. The consequence of this irritation is an increased flow of bile; and as this bile will now be darkened, becoming greenish or darker colored, in consequence of the action of the gases of the intes-
tines upon the calomel, it is now looked upon as a certain fact that the liver is disordered. Dose after dose of calomel is given, and as by each dose the liver becomes still more irritable, pain in the side is complained of by the patient; and if any doubts of a disordered liver had ever existed in the mind of the practitioner, it is now wholly dispelled; for what could cause that pain, if the liver was not diseased? At this point I will now agree that there is a diseased liver; I will admit that the organ has been goaded too far, and I will fear that chronic disease has been entailed by the practitioner upon his patient. This view of the practice by those who believe in this origin of fever is in the main correct, though the case above may be a little too strongly drawn, as the fever does undoubtedly yield in a great many cases before any severe injury has been done to the constitution; but how many have suffered with a lingering disease of the liver, who date the origin of their ailment many years back, when they suffered an attack of remittent fever. Calomel, under that theory of fever, is the sheet-anchor of practice; and when we consider the extensive prevalence of this theory, and the poisonous nature of the remedy, we can no longer be at a loss to answer the question, why do we find so few men above the age of fifty, who are hale and strong? Without an exception, those who have been often subjected in early life to the practice based upon this theory, are weak, infirm old men at the age of sixty. Hale, hearty, robust men, of seventy-five, are found only among those who have taken but little medicine. This reflection leads us to believe that there is something radically wrong in medical practice, that it is not consonant with the laws of nature; and we believe strongly that it is this very theory which we have been combating, that has caused the mischief. The constitutional effects of calomel cannot with propriety be considered here; but our aim is to show that remittent and all other types of malarial fever can be treated more safely and more successfully without it than with it.

All the symptoms which occur during the paroxysm of fever are dependant upon nervous irritation; and so soon as this irritation can be overcome, the fever itself will yield, no matter whether it be remittent or intermittent—whether it be complicated by congestion or inflammation; for congestion is but a
symptom of excessive irritation, and inflammation is but the result of irritation too long neglected. Cases complicated with congestion require an energetic administration of remedies, wholly inadmissible in simple cases; and inflammation requires its proper treatment, in addition to that peculiarly appropriate to the malarial disease, which it complicates. It is a matter of little importance where the congestion may be, the most energetic treatment is required, and yet that treatment must be the exhibition of the simplest means; no mineral compound will avail here; mercurials are wholly inadmissible, and we must look to the vegetable and animal creation for the means to combat this formidable symptom. Inflammation requires the use of all those means long since firmly established as the best treatment, but we cannot combat it successfully without reference to its cause. Remove that, and we do more than half towards the removal of the local disease. Nature requires but a little help from us; give her that, and she will accomplish the balance.

The irritation produced by malaria in the nervous system is of a peculiar kind: its intimate nature we know nothing about, but with the constitutional disturbances resulting from it, we are all familiar; and as the idea has been advanced in the foregoing pages that our treatment, to be in consonance with the laws of nature, should be directed against the cause of those disturbances, and not against the derangements themselves, it is proper that the treatment should now receive a share of attention.

As we know nothing of the intimate nature of the peculiar irritation produced by malaria, reasoning alone would never lead us to its correct treatment. Experience is to be our only guide, but we could hardly want a better guide in practice, than experience, especially when its results are in entire conformity with the theory established by Reason. To treat malarial fever, so as to prevent any serious constitutional disturbance, would require the means used to be eminently abortive; they must be such as would crush the disease by striking at its cause. Those means must necessarily have some specific action on the nervous system, as our theory looks to that system as being primarily affected.

Opium, being a substance exercising an important influence over the nervous system, was early used as a remedial agent in
intermittent; and its beneficial effects have been such as to cause many to repose unlimited confidence in its powers. A North-Western writer has said that he would never feel the want of means to combat intermittent; and its beneficial effects have been such as to cause many to repose unlimited confidence in its powers. A North-Western writer has said that he would never feel the want of means to combat intermittent, so long as he had a plenty of opium; and the practice is now almost universal to combine opium or some of its preparations with those means principally relied on for arresting the periodical paroxysms of intermittent. I have myself derived considerable advantage from its use; but I prefer not to use it indiscriminately in all cases: its beneficial effects appearing to be more strongly marked in cases of irritability of the stomach; or in those cases in which the disease appears to be making progress in spite of the ordinary treatment. In such cases, the paroxysms become more alarming at each return, and it is then that opium in decisive doses—3 to 5 grs.—will exert its favorable action. In remittents, administered during the remission, it is equally as effectual as it is in intermittent.

Camphor and Ether often do a great deal of good and are admissible in cases where opium would be found to disagree from constitutional idiosyncracies. Combined with Quinine, we can place more confidence in a favorable result, than we could expect from Quinine alone. In many cases, no other remedy will be necessary than a combination of Camphor, Ether and Laudanum, in full doses, to be administered just before the time of an expected paroxysm.

The Sulphate of Quinine is, however, better entitled to our confidence than any other remedy; and when we consider the certainty of its arresting an expected paroxysm, and its admis-
sibility in all cases, and in all stages of the disease; whether in the paroxysm or during the apyrexia, its effects being the same, we are forced to the conclusion, that it is a specific for the fevers of malarial origin. Its action is spent entirely upon the nervous system; on this point all are agreed, but what is the intimate nature of that impression, none have been so fortunate as to discover. We know not the intimate nature of the irritation produced by malaria, neither do we know the nature of that produced by its great counter-irritant, Quinine.

The application of Quinine to the treatment of intermittent has been very well understood since its discovery in 1820;
but even now, there are hundreds in the ranks of the profession who know nothing of its highly beneficial effects in Remittents. That false notion, which traced Remittent fever to the disorders of the liver, is now being abandoned, and as a necessary consequence, a treatment directed against its true cause has been adopted, with results truly astonishing to those who looked upon the bile as the evidence of the origin of the fever: Quinine may be administered freely during the remission and with the assurance of perfect safety; no matter how indistinct the remission. Under this practice those fevers which were a few years ago looked upon as fatal in a high degree, as being but a little removed in point of danger from the yellow fever of New Orleans or Vera Cruz, and which required the utmost skill of the practitioner to treat successfully, are now as much under our control, and are attended with as little danger, as the intermittent type. This improvement in medical practice has given rise to the remark, that diseases have changed, that *bilious fever* has been supplanted by other fevers of a less dangerous character. This remark is particularly apt to be made in the neighborhood of those physicians who understand the application of quinine to the treatment of malarial fevers. And it is not strange that this remark should be made by the unprofessional, when we reflect upon the fact, that now, a man seized with remittent fever is up and about his business, in less than half the time it took the old routine practitioners to get the fever arrested. The practice has greatly changed, and not the diseases; new theories have, it is true, given new names to old diseases, but that has been the only change except the improved practice founded upon those theories.

It is true, that the name *Bilious fever* should be forgotten, and those physicians, who, like myself, do not believe in its existence, should make it a point never to use the expression.

Purgatives are generally very useful in all forms of malarial fever. By unloading the bowels, we remove all matters that may act as irritants to the intestines; but the principal use of the purgative is to favour the action of the quinine; and for this purpose, some of the vegetable cathartics in common use, will be found amply sufficient. A compound of rhubarb, aloe and Castile soap, is an old formula, but not the less excellent on that
account. I think highly also of jalap, and the podophyllum peltatum—senna and the neutral salts. Any one of these combinations, or any other formula of simple vegetable purgatives, will answer all the useful purposes we could expect from cathartics.

However easy it may be to arrest the paroxysms of an attack of malarial fever, it is generally admitted to be a matter of some difficulty to arrest the disease permanently. In this region, there is a great tendency to relapses, and no treatment which I have hitherto adopted for the prevention of relapses has been completely successful; many cases resisting all treatment, and even continue to this time. The intervals between the relapses has been generally 14 or 21 days; the greatest number being disposed to return every 14th day. Those who are partial to the use of calomel attribute relapses to the absence of this article in my prescriptions; but this reflection is entirely unwarrantable. I have used calomel in a great many cases the past season, for the expressed purpose of determining its powers in this respect; and the result has been opposed to the use of the remedy. I have even produced severe salivation; yet the relapses occurred as regularly as before, but with this disadvantage, the general health between the attacks was not so good as before the mercury was used. Nor do I trust to cases occurring in my own practice for the condemnation of the mercurial practice; but I could cite cases occurring in the practice of one of the neighboring physicians, who is known to be devoted to the calomel practice; and I would further make the assertion, without fear of contradiction, that what I state to be my own experience, would be found to be the experience of every Southern physician. My observations will however be directed to this point during the next autumnal season, and should my views on this subject undergo any change, I will, as a lover of truth, immediately acknowledge my error.

I have lately seen the result of some trials made with Strychnine at the North-West, but I have not had an opportunity of testing the value of the practice. I can readily believe that it is a valuable remedy.

I have never used arsenic for the purpose of preventing re-
lapses, except in one case, and in that the result was most satisfactory; the principal reason for not using it more, being the invincible objection of patients to its use. I would, however, prefer to discard all mineral medicines from my practice; but in the present state of medical Botany, minerals are still to be regarded as substances fit for medicine.

In the preceding remarks, nothing like a systematic dissertation upon the causes, pathology and treatment of fever has been attempted. The medical journals teeming with essays on the subject, the necessity for dwelling upon all the points connected with the subject, was not so urgent: it was my object simply to give expression of my belief and practice, and to contribute a little towards establishing that doctrine and practice which I believed to be in accordance with the present state of Physiological Science.

ARTICLE XXI.

Ascites, followed by Suppuration after Tapping—patient recovered. A Case reported by A. Connell, M. D., of Mount Zion, Hancock county, Georgia.

I propose giving a brief history of a case of Ascites, which occurred in my practice, and which, if you think worthy of a place in your Journal, is at your service.

In the spring of 1841, I was requested to see Peggy, a negro woman, aged 50, belonging to Mr. P——, who had been laboring under dropsy of the abdomen, for twelve or fifteen years. The collection of water at the time I saw her was very great, and I thought it advisable to tap, before putting her under any course of treatment. March 7th I tapped her, and drew off between six and seven gallons of water. The character of the fluid presented nothing peculiar in its appearance. The patient soon recovered from the operation; and I flatterted myself, at one time, she would be permanently relieved by it and the subsequent treatment; though after the lapse of two or three years, the fluid began to accumulate slowly, until March 5th, 1847, at which time she was suddenly seized with a violent pain in the right hypochon-
driac region, which soon extended over the whole abdomen. I was requested to see her March 7th, and to bring with me an instrument for tapping. I found the abdomen enormously distended, and exceedingly tender over its whole surface—so much so, that she could not bear the weight of her clothing, or the slightest pressure of the hand. I was at a loss to know whether the pain was produced from peritoneal inflammation, or whether it arose simply from tension. I, however, resolved on tapping again, and risking the consequences, as it was the only means that promised even temporary relief. I accordingly introduced the trocar, and to my astonishment, nothing but a purulent matter was discharged. The pain in the abdomen ceased, after taking away between a half and a full gallon of this matter,—except that of the right hypochondriac region where the pain had first commenced,—which satisfied me, that this pain was produced from tension, and not from peritoneal inflammation, as I had apprehended was the case. I withdrew the canula, after taking away about two and a half gallons of pus, without any change in its appearance.

I applied different tests to this matter, all of which proved it to be pure pus. I sent a specimen of it to Dr. J. A. Eve, of Augusta, who, assisted by Dr. Dugas, examined it carefully, and they also pronounced it to be "pure purulent matter."

The patient soon recovered sufficiently to walk about the room, and professed to be much relieved by the operation. She was suffered to take nothing but mild laxatives, and a light but nutritious diet, for about three weeks, at which time I again tapped her, taking away four gallons of pus, of the same kind as the first, making in all six and a half gallons. She was then put under an alterative course of mercury, combined with diuretics. Under this course of treatment she rapidly recovered, and was soon able to resume her usual occupations in the family. In some two or three months, after the last operation, she walked a distance of three miles and back on the same day, without inconvenience.

I submit this case without comment, as it is the only one of the kind I have ever met with, and a post-mortem examination can alone reveal its true character.
ARTICLE XXII.

Interesting Case of Gun-shot Wound. By A. Lewis Hammond, M. D., of Augusta, Georgia.

We frequently meet with gun-shot wounds, now-a-day, in private practice, full of interest. The one before us is such in several points of view. Mr. H., a civil officer of Augusta, about 40 years old, of good constitution, well made, and in perfect health, was fired upon on the night of the 4th of March, and feeling himself badly wounded, attempted to reach his home. He walked a short distance, called for help and fell. He was assisted home by the city-guard. I saw him soon after this, and found him lying upon his face and in great agony. A ball had entered directly in the median line of the body, below the middle of the sternum, and had made but one opening. He, however, complained when pressure was made in the course of the sixth and seventh ribs, thus indicating the probable passage of the ball in this direction. Dr. L. D. Ford, the Mayor of the city, saw the patient about an hour after he was shot. A tumour was now perceptible, forming below the lower and outer margin of the great pectoral muscle, and below the axilla of the right side. His pulse was extremely feeble; the extremities were cold; and some blood had been expectorated. Hot bricks were directed to his hands and feet, and we gave the patient some brandy and water. At 4, P. M., five hours after the wound was received, there was some reaction.

March 5th. Dr. P. F. Eve saw the patient, and suggested a consultation with other gentlemen, which was held at 9, A. M.; Drs. Dugas and Newton being also present. The attempt to ligate the intercostal artery, supposed to be wounded, was discussed, but on account of the extent of injury to the right lung, the operation was deferred for the present. The tumour below the axilla still continued to augment, as indeed it did for 24 or more hours after the patient was shot, and acquired a size in the cellular tissue, under the skin, capable of holding a quart or more of fluid. But the effusion of blood and air into the chest also increased, until the right side of the thorax was nearly filled, and the vesicular respiration arrested. The system, too, had now fully reacted, and it was determined to watch the
operations of nature in the case. Opiates, elixir vitriol, cold drinks, and perfect quietude, were enjoined in the treatment.

On the 6th, the patient appeared somewhat better; the hemorrhage had ceased as far as the symptoms would indicate, and he had had some refreshing sleep. The urine had to be drawn off by a catheter. During the day a change began to be manifested in difficult respiration, intense pain about the right lung, vomitings, rapid increase of pulse from 120 to 175, and becoming feeble and tremulous. His cough also increased; he spat up some blood, and had continued mucous rattle. These unpleasant symptoms resulted in death on the 8th, being the fourth day after the reception of the wound.

Autopsy, seventeen hours after death, enabled us to make the following report to the Jury of Inquest.

Augusta, March 9th, 1848.

In examining the body of Mr. H. this morning between 9 and 10 o'clock, in the City of Augusta, Richmond County, Georgia, we trace the ball through the skin, directly in the median line of his chest, and $2\frac{1}{2}$ inches above the lower line of the breastbone or sternum, through which it also passed,—thence it was traced through the inferior or lower lobe of the right lung, and out of the cavity of the chest through the seventh rib, which it fractured near its lower edge, dividing the intercostal artery.

The ball we found under the skin and below the right arm-pit. We moreover found the cellular tissue, about the wound, especially, at the point where the ball lodged, distended with blood and air, as also the right cavity of the chest. The wounded lung was likewise infiltrated with blood. The opposite side of the chest contained serum. The ball was larger than the largest sized buck-shot,—it is compressed, as if forced into or out of the pistol, constituting what is called a slug. In our opinion, this wound produced the death of Mr. H. **Paul F. Eve.**

A. Lewis Hammond.

ARTICLE XXIII.

Un-successful Cases in Surgery. By **Paul F. Eve, M.D.,** Professor of Surgery in the Medical College of Georgia.

A Medical Journal is wanting which shall communicate only cases that have ended unfavorably. It would be of more service than a number of others. *Von Dr. F. Pauli, of Leipsic.*

The prospectus of a Medical Journal designed to become the record of unsuccessful cases, would, we apprehend, meet with
but little encouragement. The novelty of such a proposition might indeed attract attention, but few could be induced to continue their support, by subscription, and still fewer by contribution to a periodical, in which only their unfavorable results in the practice of medicine and surgery were to be found. Still there is a moral implied in the above suggestion, and we require to be often reminded of the obligation to discharge our whole duty. With every disposition to be honest and candid, yet because success is so flattering, we often fall short in reporting the whole truth. Designing to do what is right, still we omit the disagreeable part of our duty.

IIow true is it that unsuccessful cases are never or seldom published. As journalists, we complain of the indolence of those who might with a little effort, add something valuable to the stores of knowledge, for the public good, and have repeatedly urged practitioners of medicine to be more industrious and faithful in writing for the medical periodicals of the day; but by what appeal, we should like to know, could they be induced to send us their unfavorable results?

That our profession may exert its full influence, a change in this respect is demanded. It is only from a collection of all the facts bearing on a given subject in medicine, that correct principles in reference to it can be derived. We want the general and not the particular cases of a surgeon or physician—his whole practice, and not the successful instances alone. The examples of my worthy preceptors, Drs. Gibson and Horner, of Philadelphia, should be more generally imitated on this subject. We want more of their independence in recording and publishing too, unfavorable cases. In medicine, give us the whole truth.

It is true, that the position of the medical profession to society is such and there exists so great a disposition, on the part of the public, to arraign and censure its members for true or alleged errors, that some apology might be offered, at least in the United States, for the reluctance manifested to publish unfortunate instances occurring in practice. But this is not the only reason, and were it, we would be willing to encounter it. Who is the faultless man? Who has not erred in the practice of medicine and surgery? We exercise a fearfully respon-
sible calling, and our whole concern is to discharge faithfully our duty, the consequences belong to God. The community know this fact, that we are not and cannot be held accountable for the results of a single dose of medicine, or any operation whatever, when prescribed or performed according to the acknowledged principles and practice of the profession. We have yet to learn that any one will suffer by an honest exposition of the truth. We have published successful cases; it is proper that we give the same notoriety to those that have terminated unsuccessfully.

The foregoing remarks seem appropriate to the object of this article. It is proposed to present the profession a brief narration of cases in surgery, occurring in our practice, which have had an unfavorable issue. Those of a striking character, exciting much interest at the time, are here given. While the catalogue may not be complete, all are included of any note during a practice of twenty years. We have endeavored to be candid and honest in these confessions.

Case I. Amputation of the Penis for Cancer; death in a few hours afterwards.—In 1837, I amputated the penis of an Irishman in our city hospital. He was near 50 years of age; had had phymosis, and the glans was now the seat of a large cancerous ulcer. Hemorrhage being prevented by pressure, made by Dr. Newton, in addition to a tape tied around the penis, near its base, about one-half of this organ was removed by a single sweep of the knife. Ligatures to the bleeding vessels, and the usual dressing were applied, and a dose of laudanum administered.

Finding my patient doing well in the afternoon visit, at his request, an orange was sent him. About 11 o'clock at night, I was sent for; the messenger reporting him to have a sudden and violent attack of colic, produced by his eating not only the orange, but its rind. Before I reached the hospital, he was dead. A mustard plaster had been applied, and more laudanum with peppermint given to him. He had swallowed the entire rind of the orange, and was attacked soon after with what the keeper of the Institution thought was cramp colic. There had been no hemorrhage from the stump, neither had the sufferings of the patient been very great.
In 'Taylor on Poisons,' just published, on page 23, it is stated that there was great reason to believe that a child, aged seven years, had died from the effects of a quantity of orange peel with which it had gorged the stomach.

We have known the case of a child, in which death resulted from eating the rind of an orange. (Page 133, 5th edition Wood & Bache's Dispensatory.

I think death in this case, must be clearly attributed to the effects of the orange peel, and not to the operation performed. Dying, as this patient did, in about twelve hours after it, it could not have been from the exhaustion of the amputation, (nervous or sanguine,) as the facts prove, nor of course from inflammation, because sufficient time had not elapsed for it to have been established. A post-mortem examination could not be obtained.

Case II. Comminuted Fracture of the Patella—application of the immovable apparatus—mortification—amputation of the thigh—recovery of patient.—This case produced great excitement at the time it occurred, or rather when agitated by a conflict with the law. It is the one, for which a suit of mala-praxis was commenced against me in our Superior Court—damages laid at $10,000—but which the plaintiff's attorney abandoned soon after my testimony was partially presented at the trial.

On the evening of the 16th of May, 1841, I was called to see Mr. B., in conjunction with my cousin, Dr. J. A. Eve. While driving a horse in a buggy, he had been kicked on the knee, and had fallen to the ground. The leg had therefore been flexed upon the thigh subsequent to the accident, which occurred about a mile out of the city, and an hour or two before we saw the patient. A transverse fracture of the patella was readily detected: as the patient was young and in good health, the immovable apparatus was proposed as the most certain mean of securing union in the broken bone. This was accordingly applied at once, embracing the foot, leg and thigh. The usual number of daily visits were made, a dose or two of morphine and some opening medicines administered, and on the 22d, six days after the accident, a roller bandage was applied over the
whole apparatus, to keep it in close contact with the limb, as it had become a little loose by drying and the shrinking in the soft parts. The next day the patient complained of pain, for the first time, in the knee-joint, and the whole dressing was removed. The limb was found cool and pale, owing probably to the compression, but chiefly to the position of it, it having been kept constantly elevated at an angle of about 45 degrees. The knee and the parts below soon after this began to swell, and Drs. Hook and Dugas were added to the medical council. The unfavorable symptoms continuing to increase, amputation of the thigh was performed on the 26th, ten days after the accident. The patient had a good recovery from this operation.

In examining the knee-joint, it was found filled with dark grumous blood, a portion of the cartilage of the internal condyle of the os femoris was chipped off, and the patella fractured into a number of fragments. The portion of the adductor magnus muscle which passes down to be inserted into the internal condyle of the thigh bone, was moreover in a sphacelated condition.

On June 13th, I was called to attend to an infant in the father's family of this patient, which was so ill that it died. As late as August, I was employed to adapt an artificial leg to the stump, and it was not until the next winter that the suit was brought against me.

A statement of the case, with interrogatories, were sent to eminent surgeons of Boston, New-York, Philadelphia, Charleston, the interior of this State, &c., and by the aid thus obtained, through the efficiency of my attorneys, Messrs. Cumming and Jenkins, I was prepared for trial on the day appointed in June, 1842. My thanks are due to Dr. G. W. Norris, of Philadelphia, for putting at my disposition Seutin's work on the Im. Apparatus, just then arrived in this country; and I cannot refrain from inserting here the noble reply of Prof. Geddings, of Charleston, when the question was propounded to him, what is the result of such accidents as the one I was called upon to treat—"death of the patient, either from mortification or tetanus." This controversy but the more fully convinced me that I belonged to an honorable profession, and was the associate of high-minded, dignified and liberal gentlemen. I have yet to learn that a want of success in every case is any disgrace, or
that this trial ever injured me. My private class, the next winter after it, paid all my expenses, amounting to $700. I have freely forgiven all who may have ever wished to slander or wrong me, and I can now allude to the circumstance without an unpleasant emotion.

Case III. Failure to Ligature the Femoral Artery for false Aneurism—death in about sixty hours afterwards.—The 27th of April, 1841, I was called in consultation with three practitioners of this city to a case, the history of which is as follows: Master M., aged 12 to 14 years, had some six weeks previously slipped on a slated roof of one of our largest houses, and fell into the gutter containing broken window glass. The family physician could detect no foreign body, in a small wound found to exist below the anterior inferior spinous process of the left ileum. A tumor, however, gradually formed in this region, and which continued to develop and bled so freely at times, that in the end four physicians were called to the case. On the day I made the first visit, the patient had lost a considerable quantity of blood, and was found in nearly an exsanguinous condition. Believing a false aneurism existed in the upper part of the thigh, under the fascia lata, an opening near the wound which had been previously made was enlarged, and a piece of glass, about two inches long and narrowing from half an inch to a sharp point, was extracted from the centre of a large bloody tumor. The clots were now turned out of the sac, and as is usual in such cases, no arterial opening into it could be detected. The patient was so exhausted, that no pulsation could be felt in either of the inferior extremities. It being deemed prudent and proper, I attempted to ligate the femoral artery at the crural arch. Having made the usual incisions, &c., and rejecting what was first supposed to be the artery, (for there was no pulsation whatever to direct us,) the ligature was tied around what all agreed was it.

In urinating, a few hours after this operation, the hemorrhage was reproduced from the aneurismal sac. This occurred, too, when his bowels were evacuated. The patient never rallied from the time I saw him, and expired in about sixty hours after this period. A post-mortem examination of this case was per-
mitted, revealed an immense aneurismal sac, in the upper anter-terior part of the thigh, extending into the pelvis near the anter-iior inferior spinous process of the ileum. This explained how the action of the bladder and rectum reproduced the hemorrhage. As regards the operation, the femoral artery was not tied; the ligature embraced only a portion of a tendon. In justice to myself, I called the attention of the professional gentle-men present to the facts, that I had cut upon a non-pulsating artery, and by laying down a director, exhibited how far it had been displaced (about an inch) by the aneurism from its natural position. The external circumflex artery was the one injured, I think by the piece of glass. We were not prepared to inject it, and could not otherwise ascertain the wounded vessel.

Case IV. Trephining the Antrum Highmorianum—death within fifty hours.—The 12th of April, 1844, I operated for enlargement of the right superior maxillary bone. The source of the disease was quite obscure. The patient, a young lady aged 18 years, had an indistinct recollection of receiving a blow, by a fall, upon the cheek, while going to school, very early in life. The tumor was supposed to have originated in the antrum, and had now acquired considerable size. The eye was distorted by it, the cheek projected, the nostrils were closed, and the palatine process of the upper-jaw of the right side much de-pressed.

An operation being decided upon, the membrane of the mouth was so detached as to expose the anterior surface of the su-perior maxilla, and while the lips were drawn to the right side, the crown of a trephine of common size was applied to the bone. Its action was gradually continued until it had attained the depth of one and a half inches. The enlargement proved to be osseous, and the operation for its total removal was for the present abandoned. The diagnosis of four physicians, that it was of a polyposus nature, was erroneous. A small strip of linen was placed in the opening made by the circular saw, and the patient retired to bed. The operation was well borne; there was no unusual hemorrhage nor unpleasant circumstance attending it, except the error of diagnosis, which was not communicated to her, but was afterwards to her parents. The patient was seated dur-
ing the time in a large arm-chair. She took \(\frac{1}{2} \) gr. morphia when she laid down. The next day our patient was up in a chair by an open window, as the weather was pleasantly warm, engaged in a sprightly conversation with her friends. She retired early to bed this night without a complaint or unpleasant symptom. About 11 o'clock, having occasion to spit, and finding the basin had been removed from the chair, near the head of the bed, upon the floor, without disturbing her mother, who was sleeping with her, she reached out of bed, with her head down, and took up the basin from the floor. A discharge of blood from the mouth, and pain referred to the seat operated upon, roused the family, and I was sent for. The bleeding had ceased when I arrived, having not amounted to more than a table-spoonful, probably not so much; the lint was removed from the wound, and the mouth freely washed with warm water. Having thus quieted the alarm about the hemorrhage, a tea-spoonful of laudanum was administered to relieve pain and induce sleep, and at 12 I left the patient sleeping quite naturally.

Between 5 and 6 o'clock the next morning, I was summoned in haste by the report that my patient was dying. Her mother stated that she had slept as usual up to day-light, when, to her great surprise, she did not answer when spoken to. The patient was now comatose, unconscious, insensible; had slightly stertorous breathing, dilated pupils, the pulse was frequent and feeble, the eye-lids closed, the countenance flushed and the skin warm and moist. These symptoms continued in spite of the assiduous and energetic treatment, consisting of cold to the head, sinapisms over the extremities and body, stimulating enemata, directed by four physicians. The patient expired about 12 M., fifty hours after the operation. No post-mortem examination was allowed.

What was the cause of death in this case, so unexpected until a few hours before its actual occurrence? Was it the result of the position of the head in reaching the spit-basin, inducing inflammation or apoplectic condition of the brain?—or am I flattering myself in the willingness to accept this explanation of it? Had the laudanum, one tea-spoonful only in quantity, any thing to do in inducing the melancholy result? This was of course the satisfactory cause of death which the public seized
Eve, On Un-successful Cases.

1848.

Upon to censure the Doctors. But the symptoms were not those of narcotic poison, and yet it is proper to state, that it was said a sister of the deceased had died from an ordinary opiate dose.

This patient could not be roused at any time; there was no vomiting; the lower-jaw did not drop; the sphincters were not relaxed; there were no convulsions. Taylor says, the smallest fatal dose of the tincture of opium in an adult, which is recorded, is two drachms.

Admitting, as we do, that an over-dose of opium produces a condition of the brain resembling apoplexy, and that this affection is rare in early life, yet being fully satisfied that one teaspoonful of laudanum and \(\frac{1}{4} \) of a grain of morphine was all this patient took during the period she lived after the operation, a space of fifty hours, her death cannot be attributed to narcotism. She died, in my opinion, from a congested state of the brain, brought about by the proximity of the wound to that organ, and the unfortunate pendant position of the head, just before her unfavorable symptoms commenced. It might have been better practice to have given the laudanum in an enema. If in error, I should be pleased to be corrected by my professional brethren.

Case V. Failure of an Anaplastic Operation for Cancerous Mamma—return of the disease, and death of the patient.—February 21st, 1846, I performed an extensive dissection for a cancerous breast of a man, and attempted to cover the surface exposed by healthy integuments transposed from the neighboring parts. The patient was about 50 years old, and had observed a tumor, very early in life, occupying the right mamma, which, during the few past years, had ulcerated and greatly increased in size, and now presented the evident signs of cancerous degeneration. In consultation with my friends, it was determined to remove the whole of the diseased structure, and to supply its place by a flap dissected from the left hypochondriac region. The operation was performed before the Class of our College; the surface denuded was found to measure 22 inches in length by 9 in its lesser diameter. The base of the reflected flap was 2\(\frac{1}{2} \) inches, and situated near the opposite nipple. The number of sutures employed to retain it in its new position was very great, and these were moreover sustained by
adhesive strips, compress and bandage. The integuments of the denuded hypochondriac region were made to approximate as nearly as possible by adhesive plasters. On the 23d, two days after the operation, the wound was dressed. An unpleasant odor, faint at first, but increasing as the dressings were removed, prepared us for the unpleasant reality of a detachment of the entire cuticle of the flap. On the 25th, the sutures were all extracted, and the base of the raised and transposed integuments cut off, as only about half an inch of its entire circumference had adhered to the surrounding parts.

Twenty days after the operation, new tubercles began to appear on the parts from which the disease had been removed. In vain were these attempted to be repressed by local and constitutional means. The actual cautery seemed for a time to exercise the most controlling influence over the cancer, but it finally prevailed over all remedies suggested, and my patient returned home to die the next fall.

Case VI. Ancient Dislocation of the Fore-arm backwards—reduction, but fracture of the olecranon.—This case is alluded to in one of the recent numbers of this Journal, and the impression made at the time that it was completely successful. We haste to correct the error—the dislocation was reduced, but at the expense, we now believe, of the olecranon process.

Our patient, Mr. G, is a fine specimen of a man, aged 27, height six feet two inches, weight 200 pounds. By a fall, the left fore-arm was dislocated backwards, seven months and six days before the attempt was made to reduce the displaced bones. He was subjected to the influence of ether and the pulleys, and at the end of one hour and three quarters, the fore-arm was bent about at a right angle to the arm. Great force was used, and a distinct crackling noise heard near the elbow-joint, at the time the parts yielded. One pint of ether was consumed, and when the patient recovered from under its influence, he thought the time in which we had been engaged in the operation to have been about fifteen minutes.

Our patient suffered but little from the terrible pulling, &c., to which he had been subjected; was out on the fifth day after the operation, and left for home on the ninth day, with instruc-
tions how to use the member, and requested to report himself in two or three months. I saw him again in March; he had not recovered the use of the arm to the extent expected, and upon examination of it, I found the ulna \(\frac{1}{4} \) of an inch shorter than the opposite one. Still the patient is satisfied with the result of the operation, for while he has not the full use of the limb, he can yet dress and feed himself. By actual measurement and comparison of the two ulnas, I have little doubt but that the olecranon process of the dislocated limb is broken off. This, too, is the opinion of others who have seen the case.

Case VII. Removal of a fibrous Tumor of the Thigh, weighing 5 lbs. 2 oz.—death on the fourth day after the operation.—About the middle of January last, I was consulted in reference to a large tumor in the posterior region of the thigh of an aged African. It extended from about the trochanters into the popliteal space, and projected very considerably posteriorly. Being bound down by the fascia lata, it gave an indistinct sensation of fluctuation, particularly in the inferior portion of it. The patient was very aged, probably near 90 years old, and could give a very imperfect account of his disease. He first said it dated back only a month, and this connected with the palpation of it, induced the deceptive diagnosis of its being a femoral abscess. As this was the opinion of those who had examined it, I made an explorative puncture before the Medical Class on the 19th of January. Only blood issued from it; the opening was enlarged and the finger now detected its fibrous character. On the 21st, two days afterwards, the diseased mass was dissected out and found intimately attached to the sciatic nerve. After the integuments and fascia lata were laid open over the length of the tumor, it was raised up, and this large nerve, flattened by the pressure to more than double its usual width, was found involved in it. By careful dissection, the sciatic was avoided; the edges of the wound were then maintained in position by plasters, compress and the uniting bandage. The patient was rendered insensible, during the whole operation, by etherization.

The tumor weighed five pounds and two ounces. It was fibrous in its nature, much harder in its upper portion than the
lower. By a dose or two of morphine, the patient passed a comfortable night, and was in good spirits the next day. On the afternoon of the 2d, finding him restless, the wound was dressed. There was no union taking place, but bloody serum was being freely discharged. The patient would lie in bed in no other position but upon his back, and of course sustained the weight of the thigh somewhat upon the wound. On the third day he began to decline, and died on the 25th, being the fourth day after the operation. A post-mortem examination revealed not only inflammation, but affusion of blood in the spinal cord, where the sciatic nerve was given off on the left side.

In concluding this article, I hope the impression has not been produced from its perusal, that I have been uniformly successful in all my other operations. This is far from being its object. Those only of a striking character have been narrated. Many are the minor faults in surgery which have been committed.

PART II.—REVIEWS AND EXTRACTS.

ARTICLE XXIV.

This valuable work was received two months since; but a notice was deferred with a hope of being able to lay before our readers a review with extracts; but incessant engagement has prevented us from devoting to it the time and attention due to its merits.

This book consists of a series of familiar letters addressed to the members of his class.

If Professor Meigs had written for reputation or sought the fame of authorship rather than the benefit of his readers, it would perhaps have been better for him to have composed a systematic treatise on the diseases of females, such as Dewees', Churchill's, Colombat's, &c.; or on some of the most important Diseases peculiar to the sex, on the plan of the works of Clarke, Hamilton, Blundell, Ashwell, &c., &c.; but it is very doubtful whether he would have so well subserved the
interests of those for whom he professes to write—young graduates just commencing the practice of their profession.

The style of this work is very irregular: sometimes it is elegant and occasionally ornate; sometimes rather turgid, but now and then the author descends to trite, undignified expressions, which appear out of place and not in keeping with the rest. He sometimes details conversations which, though pleasant enough and doubtless well suited to the occasion on which they were spoken, might have been left out of these letters without materially lessening their value, and certainly without detracting from his reputation as an author.

Our author advises young physicians to be plain and unpretending in their intercourse with their patients—to use simple language and intelligible terms, thereby to bring medicine down to the comprehension and understanding of the people, in all which we most heartily concur. We believe this is the true policy of physicians, the most certain and effectual method to elevate medicine and put down empiricism. It is the ignorance of the people in relation to medicine that subjects them to the imposition of empirics. Empiricism shrinks from the illuminations of science, and, like the foul phosphoric light, the product of corruption and rottenness, only shines in darkness.

The following beautiful extracts, from pages 25 and 27, shew how properly our author appreciates the importance of plainness of speech, and how well he understands in what true dignity consists:

"I say, then, it is our stupidity and remissness that work evil to the people, and redound to our own hurt also; for there is no person, endowed with a good share of common sense, to whom you could not address, through that common sense, a reasonable and plain statement of the facts of his case, the probabilities as to its course, duration, and end; with an enumeration of the safest, most convenient, and certain processes for its cure. Imagine such a person, well-informed, and you have the idea of a patient the most docile, the most exact in therapeutie and hygienic obedience; the most confiding in your skill, and the most grateful for your intervention in his behalf. Would that all our brethren in this land might adopt views like these. With their united force of intellect, of character, of beneficence, and of social station, it would be but a short time e'er the diminished head of charlatanism, under whatever disguise, would be found only to lift itself among the most ignorant and abject portions of the population, instead of riding, as it does to-day, with chariots and with horsemen, a shame to the intelligence of the age, and a perpetual eye-sore to the lover of truth and conterminer of every species of imposture. Let us explain ourselves then to the people."
"Dignity is you, not physic, nor the practice thereof. Did you never hear that

" 'Worth makes the man, the want of it the fellow,
And all the rest is leather and prunella?"

"I have seen dignified shoemakers, carters, butchers, and even a very dignified tailor, and I have known philosophers and very learned men without dignity. Believe me, there is true dignity in great virtue, great information, and great power to diffuse, apply, and make that information useful to our fellow men. Such is the dignity you shall strive to attain.

"If I could give you the best piece of advice in my power, I think I should give you this advice; namely, in all your dealings with mankind as physicians, and in all your life-doings, strive, first, to increase the boundaries of your knowledge; and, second, strive to make that knowledge as vulgar, as popular as possible."

It is to be regretted that he often violates his own admirable precepts, not only by using the hardest and strangest words ever introduced into our language, but in making quotations from various languages, Ancient and Modern, with which, it is well known, a large portion of young graduates as well as old physicians are not familiar.

Although we regret minor imperfections and blemishes that might have been so easily avoided, we are not offended with a few spots, where there is so much to admire and approve.

Notwithstanding the great irregularity of style, these letters are always entertaining and generally instructive, bearing upon them the impress of a kind heart, and good head, well stored with learning and enjoying an extensive experience. These letters are highly practical; the author appears to bring his reader to the bedside of the patient, and there examines the case and prescribes for the disease. Every young physician may read them with profit, and, judging by ourselves, we believe some not very young might be much worse employed.

On the appearance of Prof. Meigs' translation of Colombat's work on Diseases of Females in Europe, much surprise was expressed that he should have undergone the labour of translating such a book, when by his notes appended to it, he had proven himself capable of writing one much better: how far the same judges may consider their favorable opinion realized, by the work under consideration, we cannot say; but we candidly believe, though of much humbler pretension, this is practically a much more valuable book than Colombat's; and it is only to be regretted that the time and labour expended on the translation of the latter had not been employed in rendering his own more perfect.
The following lines (page 17) express the motives the author had in writing these letters, and declare the necessity of lengthening the usual four months' term, which must be acknowledged by all who, in that short space of time, are required to deliver lectures on Obstetrics and the Diseases of Women and Infants.

"Gentlemen—When I took leave of you, at the close of the session of our Lectures on the last of February, I engaged to address to you a series of letters, in which I should endeavor to lay before you my views upon some of the disorders of females; and you may remember, I on that occasion, requested each one of you to consider these letters as addressed to himself. I felt that I had not fully discharged the obligations of my professorship as relates to disquisitions upon the sexual maladies; and explained to you that the time allowed for a course of lectures, a period of only four months, is too short to permit any one fully to describe the many diseases to which females are liable.

"I had taken advantage, it is true, of every open occasion to describe the phenomena and treatment of the disorders and accidents of the various structures which it was my province to demonstrate. Still there was much incumbent on me to say, which the shortness of your sojourn here would not allow me leisure to say."

Much good sense and truth are embodied in the ensuing sentences from pages 18 and 19.

"The relations between the sexes are of so delicate a character, that the duties of a medical practitioner are necessarily more difficult when he comes to take charge of a patient laboring under any one of the great host of female complaints, than where he is called upon to treat the more general disorders, such as fevers, inflammations, the exanthematata, &c. So great, indeed, is the embarrassment arising, from fastidiousness on the part either of the female herself, or of the practitioner, or both, that, I am persuaded, much of the ill success of treatment may be justly traced thereto.

"It is to be confessed that a very general opinion exists, as to the difficulty of effectually curing many of the diseases of women; and it is as mortifying as it is true, that we see the cases of these disorders going the whole round of the profession, in any village, town, or city, and falling, at last, into the hands of the quack; either ending in some surprising cure, or leading the victim, by gradual lapses of health and strength, down to the grave, the last refuge of the incurable, or rather the uncured: I say uncured, for it is a very clear and well known truth, that many of these cases are, in their beginning, of light or trifling importance—cases in which the constitution takes no part in affections of tissues or organs, which, when slightly modified by disease, may long continue to be so without provoking any disturbance as to the harmony of the other great organs: this for example, in the organs, of the circulation, nutrition, respiration, and innervation. Yet, by
neglecting such affections in their rise, on the one hand, or by imprudently treating them by violent and disturbing therapeutical or hygienical methods on the other, the whole constitution at length comes into sympathy with the deranged member of it; and the health, the usefulness, and so, the happiness or life of the mismanaged and misinformed female, are sacrificed."

With reference to professional character, he says, (p. 21 and 28)—

"The mind and heart of the practitioner ought to be the shrine of truth and probity; his mind should not deceive itself, and his heart should not suffer itself to be deceived and misled, by any earthly temptation, from the narrow and rugged way of duty and conscientiousness."

"In order fully to discharge the duties of this great mission, is it not indispensable that you should prepare yourselves for its offices by suitable preparation of the mind and person? Of the mind, by arming it with knowledge and wisdom, with prudence and patience, with firmness to encounter all vexation and responsibility, with charity and liberality, and with all that armature of the soul which alone can render men worthy to be called ἱερεῖς, for none are so but those whose condition has raised them above the grossness and sensuality of the corporeal nature, rendering the body the servant and the minister, not the tyrant of the soul and the heart, that ought to "sit lightly on Reason's throne;" not as crushing, but adorning the intellect with noble sentiments.

"It is difficult to say how a man, in forming his manners, should proceed. Indeed, there is, probably, no art so great to form the manners as that which teaches us to keep the temper and the desires of the soul within the just bounds within which it is contained among all true followers of the Christ. To be a true and accomplished gentleman, one should "do justly, love mercy, and walk humbly before God." Any person, under such guidance, cannot fail to have manners acceptable in all forms and ranks of society, where business may present him."

He ought to have given the English for ἱερεῖς, or to have translated it, for the benefit of his readers, as some never knew Greek, and others have forgotten it: it signifies free, (men being understood.)

Descriptive of the peculiar or distinctive characteristics of woman, the following sentences (from pages 41, 42, 44, and 45) are very fine.

"Do you think that a woman, who can produce a race and modify the whole fabric of society, could have developed, in the tender soil of her intellect, the strong idea of a Hamlet, or a Macbeth? Could her voice, like the accents of Hortensius, or Tully, or Chatham's, or Burke's, command the bent ear of listening senates, or move like a tornado the agitated masses of a people tossed in the tempest of its own vehemence; and then, like a gentle west wind, soothe and calm
them down again by the influences of its reasoning and prayerful suasion?

"Ille regit dictis animos, et pectora mulcit."—ÆNEID, I.

"Such is not woman's province, nature, power, or mission. She reigns in the heart; her seat and throne are by the hearthstone.—The household altar is her place of worship and service.—The Forum is too angry for her.—The Curia is too grave and high, and the Comitia too boisterous and rude.—Home is her place, except when, like the star of day, she deigns to issue forth to the world, to exhibit her beauty and her grace, and to scatter her smiles upon all that are worthy to receive so rich a boon—and then she goes back to her home, like as the sun sinks in the west, and the memory of her presence is like the sun-light that lingers long behind a bright departed day."

"What a beautiful picture is that engraving of the "Intemperate!" which you see everywhere in the print-shops? What touching, what immortal fidelity is depicted by the artist in the face of that woman! A face beautiful in its expression of resignation, and of pride in her own faithfulness and truthfulness, as she bears on her bosom the youngest child, while she leads a sick boy by the hand, and is clutched by a timid older girl, all of them barefooted, houseless, hopeless, homeless, for they leave behind in the distance, the pretty cottage where they were born, to pursue, along a rugged way, the uncertain, drunken footsteps of the husband and the father, who leads them miserable far away, deserting the homestead she had brought as her dower, in that blessed morn when in the village church she gave herself away for him. Now here is her reward! But she will cling to him until the death of the drunkard shall have broken the bond; and after that, go weep on his discreditable grave, and forgive him too. Such pictures are from life. There are thousands of such.

"The female is naturally prone to be religious. Hers is a pious mind. Her confiding nature leads her more readily than men to accept the proffered grace of the Gospel. If an undevoct astronomer is mad, what shall we say of an irreligious woman? See how the temples of the Christian worship are filled with women. They flock thither with their young children, and endeavor to implant in their souls the seeds of virtue and piety, to be reared in that pure soil and by their watchful nurture, into plants that shall blossom like the immortal amaranth among the stars. See then what and how great the influence that women exert on the morals of society, of whole nations, of the whole world: wherever there is a true civilization, woman reigns in society. It is not until she comes to sit beside him, in view of all the people, that man ceases to be barbarous; or semi-barbarous, and cruel, and ignorant.

The following contains much of fine sentiment—(page 52.)

"I do not believe in a physician who knows only calomel and rhubarb. I would have you fill your souls with knowledge; I would have you bathe in it as in an ocean. Were I young again, and could
I appreciate as I now in some degree begin to do, the beauties of learning, I could not cast away, as I have done, a half century of time, but I would grow pale by the reflection of the midnight lamp, and I would never be satiated until my soul were satisfied with the fulness of knowledge. For what are we in the general but erring and curious inquirers? and, does not the most highly cultivated intelligence to be found among men, leave them at last, even the most gifted among them, blind, groping, feeble worms of the dust? What should be our motto and our cry, from the lowness of the human nature in which we lie groveling!—Excelsior! Excelsior!

Prof. Meigs' remarks on displacements of the uterus are excellent. We know no treatise on the subject with which we are more pleased, or to which we can refer for more judicious views of the nature and management of these distressing affections.

We are gratified to find his opinions, in most respects, coincide with our own. Our limits will only allow us to subjoin a few sentences. (Pages 173, 4 and 5.)

"Those females, however, who labor under prolapse from the mere descent of the vagina, arising from its relaxation or loss of tonicity, can be cured by the pessary. I take it for granted, that every living tissue has an inherent tendency to contract, and when that tendency is not carried out into execution, it is because something resists, antagonizes, prevents it from obeying its law. To support, then, a vagina at its normal elevation within the pelvis, it is to take away the resisting antagonizing preventing cause, and to allow it, with time, to recover its normal density and solidity.

"I mean not to say that this is always the sole thing needful to the cure; but I do suppose that it is in many instances the only chirurgical or medical process demanded, since the freedom from pain or inconvenience that follows the timely application of a proper pessary sets the woman free from the bonds of her symptoms, and enables her to take advantage of the restorative power of diet, air, exercise, bathing, traveling, and other hygienic methods, the wise and prudent employment of which may be expected to repair the mischief of debility and relaxation not as to the vagina alone, but as to every part and parcel of her living system.

"Where the woman's general health, however, is broken, and her great alimentary, respiratory and circulatory functions overthrown, we should gather by careful inquiry and observation the indications of treatment, and pursue them to a subduction of the special evil or evils. A woman may have bad health from deranged action of the chylopoietic organs, requiring the exhibition of blue pill, taraxacum, alkalies, nitromuriatic acid, eccoportics, or even purgatives. She may have neuralgic or neuropathic affections springing from a vice in the haematotic tissues, from exaggerated vital sensibility of the heart, &c. In all these varieties of complaints, whose name is legion, let the especial sin be found out and eradicated.
"The bitter tonics, bark, wine; the chalybeates; a trained health; the exact indication of the diet as to quality and quantity; the amount of wine, malt liquor, &c.: these are the problems you are to solve, and upon their correct solution depends the question whether you are to have the great satisfaction of seeing your patient restored to health; or whether she, by a dawdling, indeterminate course of counsel and prescription, is to be left to drag out the weary years of broken health, lapsing from one evil to another, until, under the first serious attack of disease, she falls the victim of what is truly denominated a broken constitution. Who broke that constitution? The disease, by its violence, or the Doctor, by his want of foresight, zeal, and intelligence?

"The pessary, then, is to be regarded as the suspensory, as the splint, as the bandage—and, in truth, as happens in many other cases in surgery, these are the only indications. But, as in surgery, you would not, perhaps, treat an orchitis solely by the suspensory, but would make certain prescriptions, with a view to abate constitutional or local derangements of the circulation, the absorption, or the innervations of a part, so in the management of the prolapsions, you might not rest content with the curative power of the pessary alone, but provide the other juvanta of which I have already made mention.

"How long shall a woman wear the pessary? An important question, that cannot be solved but upon experiment. Several months will in general be required in any case, because the fastidious delicacy of a female will always prevent her from disclosing to you her distress in its early stages, and you know that chronical disorders are more difficult of cure than recent or acute ones. Hence I repeat that the cases that may come under your care, are very likely to prove tedious and protracted. They will be mostly chronical.

"It will be a part of your duty to keep up a strict surveillance of the patient under treatment. It will be a duty to receive her report from time to time as to the operation of the instrument. You may become convinced that a larger or a smaller one is indicated; and always, where you can believe that a reduction of the diameter of the instrument is admissible, that ought to be done, on account of the less inconvenience to be suffered by the tissues under a less degree of distention and pressure. I esteem it a very great fault on the part of the medical man, to adjust a pessary, for a female, and to send her away without very plenary instructions as to the conduct of the subsequent steps of the cure. Women sometimes have wholly forgotten them, and allowed them to remain for a series of years, until the instruments having become spoiled by age, or the action of the acids of the parts, have rusted, opened, and admitted into their cavities the most shocking collection of putrid humors. I have removed several such for persons, who had neglected themselves for years, and thus become exposed to the danger of putrid infection from materials kept in a state of decomposition in the interior of their bodies."

Eighteen pages are occupied by a conversation with Miss Helen Blanque, which, though very sensible and pleasant, might very ad-
vantageously have been condensed into six, or less. We append the first sentence or two as a sample. (Page 145.)

"I was requested on the — day of —, 184—, to visit Miss Helen Blauque, at No. — Chestnut-street, and when I called at 11 o'clock in the morning, I found her reposing in a luxurious fauteuil of the richest crewel work, arrayed in a beautiful negligée, with her slippered feet resting on a low ottoman. The apartment was richly furnished with mirrors, and chandeliers, and candelabras, and carved sofas, with chairs of every form and hue. A fresh bouquet stood upon the little table near her, by a half a dozen volumes, some of which were opened and lying on their faces, as if taken up and laid down in disgust; her hair was in curls, but carelessly; and the tout ensemble of the young lady was expressive of languor and indifferance, if not of pain or distress. As she was an old acquaintance, I could speak to her very familiarly, and so I began the following conversation:

"'Good morning, my dear Helen, I hope you are not very sick; and indeed I must think you are not, if I may judge by your fair face and bright eyes. What can you possibly want with a Doctor? Don't you know it is a very dangerous thing to meddle with people who go about the world with their pockets full of lancets, blue pills and iodine?'

"'Oh dear me, doctor, I am very ill indeed! and I desired to know if you could do anything that might enable me to get rid of the pain and weakness I have endured so long?'

"'How long?'

"'Why at least two years and a half I have been absolutely broken down with distress. I can't stand up nor kneel at church without misery; I faint at Bailey & Kitchen's or at Levy's counter; the opera kills me,—I cannot dance, much less waltz; and if I am to live this way, I declare my opinion is fixed that life is no boon.'

"'Tilly vally, child! there is little the matter with you. You are not half as ill as you think for, as I shall soon show you.'"

This would sound admirably well in a novel or love tale, but in all our philosophy we never dreamed of finding any thing like it "in a grave medical book?" we must remember, however, that our author writes for young gentlemen—we may have lost some of our romance, or our appetite for reading never being indulged to satiety, may the better relish plain and substantial fare, and not require to be excited by dainties.

On the subject of uterine tumours and enlargements, we had anticipated more; his remarks are calculated to discourage persevering endeavors to effect their removal or reduction, whereas we have known, by long continued treatment, very considerable enlargements entirely disappear or become reduced in size. Our author's remarks on their nature and formation are most excellent, but for their treat-
Females and their Diseases.

ment we would refer our readers to the works of Dr. Ashwell and Mr. Lever.

His remarks on cancer are very judicious. The following may serve as a sample. (Page 280.)

"In the progress of this half erosion or maceration, and half phage-denial ulceration of the parts, the mother cell makes its beginning; and once begun, the parts once inoculated with this new and wild, uncontrolled form of life, the destruction goes on with rapidity; nothing stays, nothing arrests it, and the sole resource of our art consists in the exhibition of opium in some one of its forms, for the subduction of the distress.

"The principal matter, however, is to make a correct diagnosis. There is danger of an incorrect one in this, that if you come to the clear conviction that the case is one of veritable carcinoma or cancer, you will be paralyzed by that conviction; and, like every body else, will settle down in the conclusion that nothing is to be done beyond the administration of those palliatives, which, though they cannot cure, yet can console and comfort the patient.

"I have certainly met, in the course of thirty years, with several cases of diseased uterus, which I had the greatest reason to suppose cancerous, but which yielded to persevering treatment, and ended in the perfect recovery of health.

"Far be from me the intention to proclaim that I have been more fortunate than my brethren, and that I have cured cancer of the womb. My desire is to say that I was mistaken in my diagnosis, and that I treated a curable and not an incurable malady. I am of the opinion that everybody holds on the subject of this terrible evil viz., that it is one of the approbria medicorum, and that it cannot be cured. No, not even by the excision of the part affected. I speak of the true cancer."

After treating of organic diseases of the uterus and its appendages, our author discusses at full length the physiology of menstruation and its disorders, the signs and diseases of pregnancy, and then takes up the subject of abortion; after which he treats of the lying-in state, and some of the principal diseases consequent on it, as puerperal fever, phlegmasia dolens, &c., all of which are treated of in a manner creditable to the author. If required to state with what part of this work we are most pleased, we would say with his letters on Puerperal fever and Phlegmasia Dolens.

It has not been our design to give an analysis of this work, but simply to make some remarks upon it, and extracts from it, which we hope may furnish our readers with a correct view of it, and recommend it to their favorable consideration; for we desire to do justice to them as well as to the author. It is certainly a unique production, in many respects obnoxious to criticism; if subjected to the crucible,
there would unquestionably be a fair proportion of *caput mortuum*; but it must be admitted that, even when not instructive, it is always interesting, and unquestionably does contain a great deal of truly scientific as well as valuable practical matter, on account of which we believe few will ever regret its purchase or perusal.

J. A. E.

BIBLIOGRAPHICAL.

The Medical Practitioner's and Students Library. Published by Lindsay & Blakiston, Philadelphia.

The first number of this publication has been received, containing a new work entitled, "Elements of the Principles and Practice of Midwifery. By David H. Tucker, M. D., Professor of the Principles and Practice of Medicine, and formerly of Obstetrics, and the Diseases of Women and Children, in the Franklin Medical College of Philadelphia—with numerous Illustrations."

The two first sentences of the author's preface set forth plainly and fully his design and the extent of his claims.

"In undertaking the preparation of a concise and practical treatise upon Obstetrics, we at first proposed to translate either the work of Cazeaux or Jacquemier; but it was found impossible to comprise within the prescribed limits of this work, either of these excellent treatises. The mutilation of these works did not accord with our taste, nor did we think such a plan could be adopted without doing injustice to the character of the works to which we have alluded. For these reasons, and for these reasons only, we have undertaken the compilation of a treatise upon Midwifery, without the slightest claims to originality, but based upon the valuable materials derived from the numerous works, both American, English and French, which have been published within the last few years.

"In the execution of this work, we have drawn freely and unreservedly from the best writings within our reach. In the text, we have generally given the names of those whose opinions have been quoted; but lest this, our intention, may occasionally have been neglected, we take this opportunity of acknowledging our obligations to those authors from whom the materials are drawn."

The author has accomplished well all he has proposed—his task is well done, and he is entitled to the thanks of the profession; for he has read for them extensively and brought together from various sources and condensed into a small compass all that is good and new in Midwifery. The improvements and discoveries in this department are all posted up to the present date, in the most concise style,
So many systems of Midwifery have been published within a few years, that on first hearing of this book, we thought it would at least be superfluous, but on seeing it our opinion has been changed.

It consists of four hundred and two pages;—very few books, in the same space, contain as much valuable matter. It will certainly be a desirable acquisition to all physicians, as well as medical students, who may not have an extensive library or time to read many books.

J. A. E.

The third American edition has just issued from the press of Messrs. Lea & Blanchard, Philadelphia.

This excellent book is so well known to the profession in the United States, and we have so recently, on the appearance of the second American edition, spoken of it in such commendatory terms, that nothing further need be added at present.

This edition is not increased in size, but if improved, as we trust it is, all the better; for improvement without augmentation is far preferable to augmentation without improvement, which too often occurs in new editions.

We will let the author and editor speak for themselves in their prefaces.

"Preface to the Third American Edition, by The Author.—I have been requested by the American publishers to revise this edition of my book, and to make such additions as the progress of science may have rendered necessary.

"This I have done so far as time permitted; and though I confess that the work is far from being as complete as I could wish, yet I see no reason to modify or change the principles therein inculcated. An extended experience will of course, in all such cases, involve the insertion of new matter; and, owing to the industry of my friend Dr. Huston, I feel satisfied that few facts of importance have been omitted.

"I owe a large debt of gratitude to my kind American friends, which I gladly take this opportunity of acknowledging, and also to the profession in America for the flattering reception they have given to my volumes. No reward could be more highly valued by me, nor could any thing make me more anxious, by labor and study, to make
my works as perfect as possible, than the knowledge that their usefulness may extend to another hemisphere.

"Dublin, November, 1847."

"Note by the Editor.—The complete revision of the present edition by the author, has rendered any material additions by the editor unnecessary; especially as so short a time has elapsed since he had the opportunity of embodying whatever seemed to him important to be added to the text. The author’s additions are numerous, and on almost every subject; but being scattered throughout the work, they can be appreciated only by a careful perusal of its pages. The notes of the editor, which are retained at the instance of the author, with slight alterations, remain as in the former edition.

"Philadelphia, February, 1848."

The demand for another edition, in so short a time, is the strongest evidence of the value of the work and the high estimation in which it is held by the profession.

J. A. E.

The work before us is a very creditable production, and will certainly be useful to students, for whom it is specially designed. It embraces Ätiology, Pathogenesis, Nosology, Diagnosis, Prognosis, Semiology and General Morbid Anatomy, all of which topics are lucidly though succinctly treated, We are happy to see the younger members of the profession devoting their leisure hours to the publication of elementary works; for their labor whilst it is advantageous to themselves must be equally so to students, whose wants they can better appreciate than those who have lived long enough to forget the difficulties under which they had to struggle during their pupilage.

Dr. Stillé’s work constitutes the second number of a series to be issued by the enterprising publishers.

D.

We return our thanks to the Publishers for this very neat and interesting work. It is one that was much needed in our country, and will be perused with much satisfaction by all who may desire to "bring up" their knowledge of this most interesting portion of the human fabric. The study of the nervous system has made such advances of late years that it becomes necessary, from time to time, to embody the new facts
and opinions in a form suited to the general practitioner, who cannot be expected to "post up" for himself. This work has been faithfully done by the author.

Poisons.—(American Medical Almanac.)

The following table contains the poisons that are most commonly used either for self-destruction or for murderous purposes, with the attendant symptoms and the necessary treatment.

Symptoms.—Metallic, austere taste in the mouth, violent burning pains in the region of the stomach, constriction of the pharynx and oesophagus, violent retching and vomiting and tenderness of the epigastrium, the matter vomited greenish or yellowish, often streaked with blood, severe gripings, purgings, and tenesmus, the stools being deep green or black, and horribly offensive; sometimes excoriations of the anus; the urine scanty, red, and often bloody; the pulse small, frequent and often intermitting; difficult respiration and cold sweats; countenance collapsed, eyes red and sparkling, delirium, death.

Treatment.—If vomiting does not already exist an emetic of sulph. zinc may be exhibited and its effects promoted by mucilaginous drinks. If sulph. zinc is not at hand, an emetic of mustard may be given. The best antidote is hydrated peroxide of iron, in doses of a tablespoonful or more every five minutes; if the patient cannot swallow, it should be introduced by means of a stomach pump: if this antidote be not at hand, let the common red oxide mixed with water be used as a substitute. If the poison have been taken in the form of Fowler's Solution, copious draughts of lime water may be given. Counter irritants and opium may be used to relieve the pain and spasm. Bloodletting should not be employed, unless to allay the subsequent inflammation, or after the stomach has been thoroughly evacuated.

Acids. Sulphuric Acid.

Symptoms.—Sour, styptic taste in the mouth, burning pain in the throat, gullet and stomach, increased by swallowing, nausea, vomiting, and horrible fetor of the breath; matter vomited tinged both by arterial and venous blood, and effervesces if mixed with carbonate of lime; difficult respiration, croupy cough, small, contracted and feeble pulse.

Treatment.—Dilute largely with milk mixed with the carbonate of potassa, lime, or magnesia. In the absence of these, with soap suds, infusions of wood ashes, white of eggs, milk, or oil. Water should not be allowed, in consequence of the heat generated upon its mixture with sulphuric acids.
Nitric Acid. *Aqua Fortis.*

Symptoms.—Much the same as those of sulphuric acid. If the acid be strong and the dose large, almost immediate death follows; if it be weak, the patient may linger for a considerable time, vomiting at intervals, shreds of membranes which have an almost insupporting fætor; obstinate constipation; yellow spots upon the skin where the acid has fallen.

Treatment.—Carbonate of magnesia or lime, in water, or any bland fluid; then evacuate the stomach by large draughts of demulcent fluid and treat the secondary symptoms on general principles.

Oxalic Acid. *Salt of Lemons.*

Symptoms.—Burning pain in the stomach, nausea and severe but ineffectual efforts to vomit, great dilatation of pupils, vertigo, convulsions, death.

Treatment.—Give large quantities of chalk, whiting, or magnesia or its carbonate, made into a cream with water and freely exhibited. In the absence of these antidotes, administer copious draughts of warm water, at the same time promoting vomiting by tickling the throat. Avoid the alkalies, potash and soda or their carbonates, since the salts which they form with oxalic acid are as poisonous as the acid itself.

Muriatic Acid. *Hydrochloric Acid.*

Symptoms. Same as Sulphuric acid. It is said by Orfila, that when muriatic acid is the poison taken, thick white fume of a sharp penetrating odor, similar to that exhaled by the acid issues from the mouth.

Treatment.—Same as sulphuric acid,

Mercurials. *Corrosive Sublimate.*

Symptoms.—Acrid, metallic, astrigent taste, sensation of fulness and burning in the throat, burning pain in the stomach and intestines; nausea, vomiting and purging, often of bloody matter; pulse small, quick and hard; frequent faintings, great prostration, sometimes coma, convulsions and death.

Treatment.—Large quantities of albumen in some form or other, as white of egg, for instance, must be freely administered; if this cannot be had, wheat flour beaten up with soap suds may be used. Bleeding is requisite if the pulse be quick and hard; inflammatory symptoms to be treated on general principles.

Symptoms and Treatment same as corrosive sublimate.

Symptoms and Treatment same as corrosive sublimate.

Symptoms.—Nausea and severe vomiting, hiccough, burning
pain in the pit of the stomach, griping and purging, sense of
tightness in the throat, small, frequent, and hard pulse, difficult
respiration, vertigo, great prostration, insensibility, death.

Treatment.—If vomiting have not occurred, it should be pro-
duced by copious draughts of warm water, and tickling the
fauces with a feather. Dilute freely with a tepid infusion of
galls, Peruvian bark, oak bark, or green tea, to form an insoluble
tannate. Powdered yellow bark may be used until the infusion
is prepared. Opium is highly useful in allaying the pain and
excessive evacuation.

Sulphate of Iron. Green Vitriol, Copperas.

Symptoms.—Griping pains in the stomach and abdomen,
constant vomiting and purging, violent pain in the throat,
coldness of skin and feebleness of pulse.

Treatment.—Carbonate of soda or magnesia given freely is
the best antidote. Evacuating the stomach by means of emetics
of sulph, of zinc, and inflammatory symptoms treated on general
principles.

Chloride of Tin. Spirits of Tin, Dyer’s Spirits.

Symptoms.—The same as those from other irritant poisons,
and a peculiar tanned appearance of the villous coat of the
stomach.

Treatment.—Milk acts as an antidote to this poison and
should be drunk copiously. Vomiting should then be excited.

Sub-acetate of Lead. Sugar of Lead.

Symptoms.—A burning, pricking sensation in the throat, with
dryness and thirst, irritation of the alimentary canal, spasms,
vomiting, and often colic; rigidity of the abdominal muscles,
cramp, obstinate constipation, urine diminished, saliva increased.
When the case is protracted, paralysis of the upper extremities.

Treatment.—This consist in the free exhibition of solution of
the alkaline sulphates, either soda or magnesia. Phosphate of
soda is also an antidote, Carbonates should be avoided, as
carbonate of lead is poisonous. If vomiting do not exist, emetics
of sulph. zinc should be given. In the chronic form, or colica
pictonum, purgatives, and anodynes are resorted to.

Carbonate of Potash. Pearl ash, Salt of Tartar.

Symptoms.—Those common to other irritant poisons. The
matter vomited effervesces with acids.

Treatment.—The patient should be made to swallow from
time to time, draughts of vinegar and water, lemon juice, or other
vegetable acids. The fixed oils are also good antidotes, such as
the castor, linseed, olive, and almond; they form a soap by
uniting with the alcali and thus destroy its caustic effects.

Nitrate of Silver. Lunar Caustic.

Symptoms.—Nearly the same as those produced by corrosive
sublime; the pain and burning in the stomach, however, are more severe.

Treatment.—A strong solution of chloride of sodium or common salt, is the best antidote; it forms an innocuous chloride of silver; then evacuate the stomach by an emetic and treat the inflammatory symptoms on general principles.

Verdigris. Sub-acetate of Copper.

Symptoms.—Very similar to those produced by arsenic; vomiting of a green coloured liquid, and diarrhoea are the most prominent symptoms; coppery eructations, and taste in the mouth.

Treatment.—The efforts to vomit should be promoted by the free exhibition of warm water, milk, or any mucilaginous drink; the chemical antidote for the preparation of the copper is albumen, if not at hand, wheaten flour and water, or milk. Vinegar should not be given; iron filings mixed with water may be given with good effect; very strong coffee with plenty of sugar, also acts as an antidote by decomposing the salt of copper.

Sulphate of Copper. Blue Vitriol.

Symptoms.—Violent vomiting of matter remarkable for being of a blue or green colour, sometimes containing broken crystals of the blue vitriol; pain in the abdomen and diarrhoea.

Treatment.—Same as for sub-acetate of copper.

Sulphate of Zinc. White Vitriol.

Symptoms.—Violent vomiting, astringent taste in the mouth, a sensation of choking, burning pain in the stomach and lower belly, quickened pulse, paleness and shrinking of the features and coldness of the extremities. Death rarely follows, owing to the prompt emetic action of the poison.

Treatment.—Assist the vomiting by copious draughts of warm water; carbonate of soda in solution, to decompose the sulph. of zinc. Let the patient drink freely of milk, or albumen, which partially decomposes the poison, and renders it more inert.

Symptoms.—Nausea, vomiting and excessive purging, accompanied by bloody stools, and excruciating pain in the bowels; sensation of intense heat in the stomach, dyspnœa, cold extremities, syncope, convulsions, death.

Treatment.—Empty the stomach as rapidly as possible, either by emetics or the stomach pump; then let the patient drink freely of milk, flaxseed tea, or other bland mucilaginous drinks.

Nitrate of Bismuth. Pearl powder.

Symptoms.—Similar to those produced by corrosive sublimate, general inflammation of the whole alimentary canal, vomiting, sensation of great heat in the chest, and difficulty of breathing.
Treatment.—Large draughts of milk, which is coagulated by the poison thus entangling it and enabling it to be expelled from the stomach; to be followed by emetics. Inflammation to be treated on general principles.

Phosphorus.

Symptoms.—Violent pain in the stomach, with a hot garlicky taste in the mouth, vomiting, diarrhoea, great excitement of the arterial and nervous system, convulsions and death.

Treatment.—Large draughts of water, or any mucilaginous fluid, so as to envelope the phosphorus and impede the combustion. An emetic to be promptly administered; magnesia may be mixed with the fluid to neutralize the phosphorous and phosphoric acids which may be formed. Oily and fatty substances should be avoided.

Vegetable irritants. Hellebore. Conium or Hemlock. Belladonna or Nightshade. Datura stramonium or Thorn apple. Aconite or Monkshood.

Symptoms.—The symptoms of these poisons resemble each other so much, that they may be classified under the same head; stupor, numbness, heaviness in the head, nausea, sometimes vomiting, at others the stomach and bowels are so paralyzed, that vomiting can scarcely be produced by the most powerful emetics; a sort of intoxication, pupils dilated, sometimes delirium, redness and tumefaction of the face, convulsions and death. The same results follow when these substances are applied to wounds.

Treatment.—Empty the stomach as rapidly as possible, by emetics of tartarized antimony, sulphate of zinc or sulphate of copper. Evacuate the bowels by active purgatives and injections, and follow these by large doses of vinegar and water and other vegetable acids. After the vomiting, strong coffee proves very efficacious in removing the insensibility. If coma or apoplexy be present, after the evacuation of the stomach, treat it by blood-letting, and revellents.

Savine. Oil of Savine.

Symptoms.—All those of high excitement, with very acute pain in the stomach and bowels; nausea, vomiting, excessive purging and convulsions, and abortion in pregnant women.

Treatment.—Evacuate the stomach by copious dilutions with mucilaginous fluids, and keep down inflammatory symptoms by the lancet and antiphlogistics.

Symptoms.—In large doses, nausea and vomiting, dryness of the throat, great thirst, uneasiness or actual pain in the abdomen, occasionally alvine evacuations, weight and pain in the head, giddiness, stupor and dilatation of the pupils, diminished frequency and fulness of the pulse, paleness and lividity of the
face, and when its use is long continued, gangrene. It is frequently given in poisonous doses to produce abortion.

Treatment.—First evacuate the poison from the alimentary canal, by the use of emetics or purgatives. Chloride water has been recommended to decompose the ergotin, or active principle; in the absence of this, nitro-hydrochloric acid properly diluted might be exhibited. Subsequent treatment on general principles.

Castor oil seed.

Symptoms.—Vomiting, purging, and griping, of great violence, burning pain in the stomach and bowels, tenderness on pressure, hiccough, faintness, and small, feeble pulse.

Treatment.—Evacuate the stomach by an emetic, and treat the inflammatory symptoms by diluents, anodynes, and antiphlogistics generally.

Symptoms.—Drowsiness and stupor, followed by delirium, pallid countenance, sighing, deep and stertorous breathing, cold sweats, coma and death.

Treatment.—The stomach pump should be used as soon as possible when the liquid poisons or powdered opium have been taken; when not at hand, give from one to two scruples sulph. zinc, or five to fifteen grs. sulph. copper; if these cannot be readily had, a teaspoonful of powdered mustard, or a tablespoonful of common salt, dissolved in a tumbler of water. Emesis should be promoted by tickling the fauces with a feather. In using the stomach pump, it is better to inject astrigent infusions, as the infusions of galls, which has the effect of neutralizing the morphia. After the stomach has been evacuated, the cold dash is an effective means of rousing the patient; the subsequent narcotic effect may be obviated, by the administration of the vegetable acids, hot strong coffee, brandy or ammonia. The patient should also be kept in motion and on no account allowed to sleep. Cupping to the temples is sometimes useful, as well as the warm bath where the drowsiness is very great. As a last resort, artificial respiration is sometimes useful in averting the fatal termination.

Camphor.

Symptoms.—Great excitement of the brain and nervous system, vertigo, great anxiety, insensibility, vomiting, small pulse, difficult respiration, cold sweats, and convulsions.

Treatment.—If solid camphor has been used, an emetic should be administered, and wine and opium exhibited at short intervals until the symptoms abate.
Hydrocyanic Acid. Prussic acid. Essential oil of almonds.
Laurel water.

Symptoms.—Nausea, giddiness, debility, vertigo, and loss of sight, weight and pain in the head, eructations having the flavor of the acid, dyspnœa, small vibrating pulse, spasms, dilated pupil, convulsions and death.

Treatment.—There are four principal agents to be relied on in the treatment of poisoning by this acid; viz.: Chlorine, ammonia, cold affusion, and artificial respiration. Chlorine water may be given in doses of f. 3 j. in f. 3 j. of water, or 30 or 40 drops of the solution of chloride of soda in a little water; the patient should at the same time inhale air impregnated with chlorine gas. Ammonia is also an antidote, but it should not be employed in a very concentrated form; it may be administered either by inhalation or in substance. Cold affusion being always at hand, may be applied immediately; a stream of cold water should be poured from a height upon the head and spine for some minutes; cold water may also be dashed upon the head and face. Artificial respiration should never be omitted. This can be easily effected, by making powerful pressure with both hands on the anterior surface of the chest, the diaphragm being at the same time pushed upward by an assistant, inspiration being effected by the mere removal of the pressure and the consequent resiliency of the ribs.

Carbonic acid gas. Fumes of burning charcoal.

Symptoms.—Same as those of apoplexy, or narcotic poisoning; great drowsiness, difficulty of respiration, and suffocation; features swelled and face bluish, as in cases of strangulation.

Treatment.—Remove the patient at once into the open air, elevate the head, and pour cold water upon it, bleed either by cups to the head, or by opening a vein, apply friction to the thorax, and revellents to the feet. If these means fail, then make use of artificial respiration. Administer stimulants cautiously, as soon as the patient can swallow.

Alcohol. Brandy, Wine, Spirits, &c.

Symptoms.—Those of narcotic poisons; insensibility with apoplexy or paralysis. Countenance swollen and of a dark red colour, and stertorous respiration. The poison can often be detected by the smell.

Treatment.—If the patient can swallow, administer an emetic of sulphate of zinc or tartar emetic; if not, evacuate the stomach, by means of the stomach pump and apply cold affusions to the head, which should be elevated; if these means fail, blood-letting should be resorted to, either by cups, or by opening a vein, and generally, the jugular, should be selected. Artificial respiration is necessary in some instances.
Experiments to prove that the Capillaries of the Lungs do not Anastomose. By G. P. Camman, M. D.—(New-York Journal of Medicine.)

As it is still a question among anatomists,* whether the Pulmonary Capillaries do or do not Anastomose, the following experiments may not be without their value.

Experiment 1. We injected water colored with gamboge into a branch of the pulmonary artery going to a section of lung, and found that a defined portion became moderately distended with the fluid; the water then commenced flowing from the accompanying bronchus and vein. The latter being secured by ligature, we continued to force in the injection, until this portion of lung became very tense. The injection continued confined to the same original extent of lung; the surrounding parts remained perfectly flaccid, and not a drop of the fluid escaped from any of the bronchial or veins.

Exper. 2. A similar injection was forced into a branch of the pulmonary vein. The fluid flowed only from the accompanying bronchus and artery. (The injection entered with such facility as to show that its course was not interrupted by any valves.)

Exper. 3. We moderately inflated a section of lung through a bronchial tube and secured it by ligature. The accompanying pulmonary artery was then injected, and it was found that the injection extended exactly as far as the inflated portion of lung, following closely the indentations so marked at the boundaries of the bronchial ramifications; the surrounding parts remaining flaccid.

Exper. 4. We substituted the vein for the artery with similar results.

Having, to our entire satisfaction, repeated the above experiments a number of times, we proceeded from the larger arteries and veins to the more minute; gradually approaching the periphery or free border of the lung, and at each advance necessarily including a smaller section. We found in these experiments, as in the former, that the injection of colored water remained confined to the ramifications of the artery or vein under examination, and did not interfere with the neighboring branches. We thus pursued the arteries and veins until they became so minute that it was impossible to insert the finest tube. In other words, we approached so near the terminal branches as to inject only a lobule or a part of a lobule.

To confirm the preceding experiments, and place the matter beyond doubt, we had recourse to another series.

* Reisseissen, Marshall Hall, and others.
Exper. 5. We injected a moderately-sized pulmonary artery with a strong solution of tartaric acid, and continued to fill the vessel, until from the accompanying bronchus and vein there streamed out a fluid which, when tested with bicarbonate of soda, proved to be the acid.

Exper. 6. Having previously secured by ligature the accompanying bronchus and vein, we injected a branch of the pulmonary artery with the acid solution, until the portion of lung to which it was distributed became distended and tense. We then, in a similar manner, injected an adjoining branch of the artery with a strong solution of the bicarbonate of soda, and applied force almost sufficient to rupture the tissue. The two solutions were apparently in close contact, yet not the least chemical action ensued, although we kept the vessels thus distended until we were apprehensive that the chemicals acting through the tissues might lead into error. Neither in this nor in the former experiment did any liquid come from the neighboring vessels.

Exper. 7. When the two solutions were injected successively into the artery and vein accompanying the same bronchus, the lung was rent in every direction by the disengaged carbonic acid.

Exper. 8. We pursued our investigations from the larger branches of the pulmonary vessels to the more minute, and carried them down as far as practicable.

If anastomosis of the capillaries had existed, the effervescence from the soda and acid would have burst the pulmonary tissues as in experiment 7.

As the preparations from the above experiments were of a perishable nature, we injected sections of lung with mucilage of gum Arabic colored with indigo, and then suspended them in alcohol. The injection passed only to the lobule or lobules to which the vessel was distributed. We possess many of these preparations, in which portions of lung have been injected, the intermediate spaces being entirely free. The surrounding lung remained perfectly flaccid and free from discoloration, even when a degree of force was employed sufficient to rupture the capillaries and form collections of injections either in the substance of the tissue or beneath the pleura. A distinguished pathologist observed this, on submitting sections of the lung to a powerful microscope. So perfectly distinct were the lines of demarcation between the injected and uninjected portion of lung, that we could readily dissect the one from the other, without causing the least escape of fluid. These preparations strikingly illustrate the perfect fidelity with which the experiments had been performed.
In performing these experiments, certain precautions were necessary to ensure success. 1. While cutting off the piece of lung for experiment, care was taken not to draw down the edges, lest the vessels to be injected should be on the apex of a cone, as the terminations of some of the lateral vessels might thus be above the incision. 2. The piece of lung was so held that the colored water flowing from the accompanying bronchus and vein could not run into the neighboring vessels. 3. The surface of the cut lung was wiped so dry that any oozing of fluid could be detected. 4. The injection was passed in very slowly, in order that none of the capillaries or tissues might be ruptured. The liquid was entered rather faster than it flowed from the accompanying vessels. 5. The bronchus and vein were not closed too soon, lest the air, which was, in some cases, forced before the injection, might rupture the capillaries. 6. On approaching as near as possible the periphery of the lung, and after inserting the tube, by compressing with spring-forceps some of the branches of the vessels under examination, a very small portion of a lobule could be injected. 7. In the small lobes of the lungs of the sheep, where the vein runs superficially for an inch or two, it afforded great satisfaction to observe the colored injection as it returned by the vein, and which continued to flow for some time before it escaped from the accompanying bronchus, proving that it must have passed through the capillaries; and if there had been any communica
tion with the neighboring capillaries, they would have become distended. 8. The warmest weather of summer was found to be the best season for making experiments and preparations. At this time of the year the lungs retain their elasticity, whereas they become dry and do not freely accommodate themselves to the injection after being hardened by a reduction of temperature and then subjected to artificial heat.

We have thus ascertained that there is no anastomosis of the capillaries of one branch of an artery or vein, however minute, with the capillaries of any other branch in the pulmonary circulation; or in other words, that the capillaries of each minute branch of an artery or vein are perfectly isolated and independant of any other capillaries for a collateral supply of blood. We hold it, then as proved, that there is no anastomosis between the capillaries of one lobule with that of another, nor, as far as analogy will warrant, between the capillaries of one minute or terminal artery with those of another. If any additional confirmation were required it might be furnished by an examination of the preparations, when it could be seen that the interstitial cellular membrane, even of the most minute lobules, remains perfectly free from any discoloration from the injection.
If we allow the structure of the pulmonary blood-vessels to be as it is generally supposed, and the anastomosis of their capillaries to be as intimate as Dr. Marshall Hall and others describe, we would expect that almost every case of profuse haemoptysis from pulmonary apoplexy, congestion, or any other cause, must necessarily prove fatal,* from the continual action of the lungs pumping, as it were, the blood from the vessels so easily supplied by the very numerous and freely-communicating capillaries, and from the difficulties which would thus be presented to the formation of coagula. Now, we know, on the contrary, that immediate danger is comparatively slight, notwithstanding, as stated by Bichat, and verified by others, that the lungs, especially when inflamed, are more frequently than any other organs, flooded with an immense quantity of blood. Bichat well says, "Voyez le poumon d’un péripneumonique; en le fendant vous diriez au premier coup d’œil, que ce sont les solides qui y sont augmentés, il a souvent comme l’aspect du foie dans la masse pesante qu’il représente; mais mettez-le macérer, bientôt tout s’échappera en fluides. Or, examinez, comparativement la peau, l’estomac, le foie, les reins, etc., devenus le siège d’une inflammation aiguë qui a fait succomber le sujet; ils ne présentent rien d’approchant de ce surcroît énorme de fluid dont le poumon inflamé dans sa substance est surcharge. Again; what prevents the occurrence of exhausting hemorrhage when there are abscesses and excavations in the lungs, surrounded by perfectly healthy structure, without even the intervention of false membrane? According to Baillie, this is "principally the case when the abscesses are small and placed at a considerable distance from each other." Yet, even then, we would suppose that the blood would be continually forced out into the cavity by the action of the lungs, while the free communication of the capillaries would furnish an ample supply. The preceding remarks are also applicable to an excavation from pulmonary gangrene; for, as Andral says, "the parietes of this cavity are, in general, not lined by any false membrane; the pulmonary parenchyma which surrounds it is in some cases perfectly healthy."

In the pathological conditions of the lungs there are appearances which are very peculiar, viz.; the abrupt and perfectly-defined margin that frequently exists between the healthy and diseased parts. These singular boundaries, as if marked out with a pencil, are found in no other organ, except, perhaps, in the brain. In inflammation, or as the effects of inflammation, in other organs, the surrounding tissue is involved; and as we

* We would certainly anticipate such a result, when it is remembered with what facility the injections entered the bronchi.
recede from the point of most active disease, the remote parts are less affected, but there are no lines of demarcation;—indeed, we can scarcely pronounce where a healthy condition commences, whereas, in very many of the diseases of the lungs, the separation between the morbid and healthy parts is perfectly defined, as has been remarked by every pathologist. Addison says, that, "especially in certain atomic forms of pneumonia, these changes are confined to individual lobules, more or less remote from each other, the common cellular membrane forms a distinct boundary to the inflammation." Grisolle speaks of isolated lobules being the seat of pneumonia; and Andral alludes continually to this disease as being circumscribed. With respect to pulmonary apoplexy, Laennec observes, that "it is always very exactly circumscribed, the induration being as considerable at the point of termination as in the centre. The pulmonary tissue around is quite sound and crepitous." Andral makes the same remark. He also, in his Clin. Méd., has very interesting observations and facts upon the lobular nature of tubercles, but they are too long to be transcribed.

The experiments of Dr. Marshall Hall on the batrachia, will not apply to warm-blooded animals. In Roget's Animal and Vegetable Physiology, it is beautifully shown how, as we ascend from the lower order in the scale of beings to the most perfectly organized, the pulmonary structure materially varies, so that analogy will not hold good between the different orders of beings. He observes, that in the frog a limited portion only of the blood thrown out from the heart goes to the lungs, so that any inconvenience from intimate communication of the capillaries is prevented; and proceeds to show the perfect and well-developed structure of the lungs of the mammalia. He states, also, that the torpid and cold-blooded reptiles are separated from the mammalia by a very wide interval; for though the former respire air, that air influences but a part of the blood, as the pulmonary is only a branch of the general circulation.

It is allowed by the best anatomists and physiologists, that the capillaries are differently arranged in each organ, being so modified as to accommodate themselves to the tissues through which they ramify. Bichat considers it certain that their distribution and formation differ in the tendons, aponeuroses, muscles, etc.

If we admit that there is no anastomosis between the capillaries of the lungs, we can satisfactorily explain many points in the physiology and pathology of the pulmonary organs. 1. We can easily perceive how, in pulmonary hemorrhage, the arterioles or capillaries, having no collateral supply of blood to instantly rush in and keep them distended, readily contract, and allow the
formation of coagula, which effectively prevent excessive loss of blood. 2. We can explain why, in small abscesses where there is not a false membrane between the parietes and healthy structure, there is not a continual flow of blood into the cavity, for as the capillaries discharge themselves they shrink; although in large cavities where, from extent of surface, and exhausting hemorrhage might occur, nature provides a false membrane. 3. We can read understandingly the facts recorded by Bayle, Laennec, Andral, Barth, and indeed by all correct and skilful pathologists. We understand why pulmonary inflammation, congestion, apoplexy, gangrene, etc., are so exactly circumscribed and defined; and why in inflammation we do not, as in other tissues, always observe a gradation in the degree of engorgement, as we recede from the centre of disease. We find the correctness of Andral, when he describes inflammation as attacking isolated points of the pulmonary tissue; and when he speaks of even vesicular pneumonia, of which Grisolle observes, that "Billiet and Barthez seem to show that this lesion, described by Andral, is only vesicular bronchitis, in which a portion only of the pulmonary vesicles are inflamed and distended with puriform fluid." We see reasons for Andral's statement, that "even in those parts where the hepatization seems most perfect, it rarely happens that some small bronchial tube may not be found still permeable to air; and we sometimes find, that when the lobe of a lung which appeared uniformly hepatized throughout, is dried and carefully examined, we can discover some capillary tubes and air-cells which, instead of having their calibre diminished, are very considerably dilated, and are at the same time free from any appearance of congestion." 4. We can understand when we turn to physical signs, why the crepitous râle is so frequently accompanied by the respiratory murmurs. We also ascertain why crepitous râle without respiratory murmurs, shows very considerable engorgement; and when respiratory murmurs is present, much of the lung is still healthy. We likewise advance a step towards an explanation of lobular pneumonia in children, and account for the frequent relapse and only apparent convalescence in pulmonary inflammation, from small lobules and vesicles remaining in a condition of active disease, after all physical and rational signs of functional derangement have disappeared. Finally, we comprehend the cause of the following phenomena observed by Stokes. "I have frequently seen," says he, "all the signs of solidification subside within two days, and have even observed great modifications in the course of a few hours, ****. On this subject more extensive observation is wanting."

We have thus demonstrated how, by being composed of an
aggregate of isolated portions, the lungs are protected from the extension of disease; and how, but for this safeguard of nature, organs so essential to existence would be more liable to permanent injury, when a portion of their tissue is incapable of performing its functions.

PART III.—MONTHLY PERISCOPE.

Homogeneousness of Man and Woman.—Dr. Matthieu, of Paris, has recently published a work on the Diseases of Females, in a notice of which in the Gazette Médicale, we observe the following table taken, it is said, from the oral lectures of Prof. Serres.

MAN.

<table>
<thead>
<tr>
<th>A. Testis.</th>
<th>B. Epididimis.</th>
</tr>
</thead>
<tbody>
<tr>
<td>WOMAN.</td>
<td></td>
</tr>
<tr>
<td>A. Ovarium.</td>
<td>B. Fimbriated extremity of the Fallopian Tube.</td>
</tr>
</tbody>
</table>

C. Vas Deferens.
D. Vesicula Seminalis.
E. Prostate Gland.
F. Cowper's Glands.
G. Corpus Cavernosum.
H. Scrotum.

[C. Fallopian Tube.
D. Uterus.
E. Uterine neck.
F. Utero-vaginal Glands.
G. Corpus Cavernosum.
H. Labium majorum.]

[And what astonishes us is the omission of comparison of the Penis to the Clitoris, or of adaptation of the Penis to the Vagina, and this too by a Frenchman.]—EDT.

Prof. Barton's opinion of the Virginia Springs.—The late distinguished naturalist and eminent physician, Doctor Benjamin Smith Barton, Professor of Botany, Materia Medica and Practice of Medicine in the University of Pennsylvania, informed us, that he visited, in an impaired state of health, the Warm Springs of Virginia, soon after they had begun to attract notoriety for their medicinal properties; that during his residence there his health greatly improved, and when, on the eve of departure to return home, the proprietors requested of him, as he had derived so much benefit from a visit to their establishment, a certificate of his personal experience of the efficacy of the waters; the doctor replied, "that he had no objection to give a certificate to the effect, that riding over their romantic country—breathing their pure mountain air—eating their fine venison—drinking their choice wines—enjoying the delightful society of their visitors, with a relaxation from arduous professional pursuits and studies, had restored him to a state of health, such as he had not previously enjoyed for several years; but as to the efficiency of the medicinal properties of the mineral waters of the establishment, he had nothing to testify in relation to his own personal experience in the use of them, as he had neither drunk of them nor bathed in them."—[St. Louis Med. and Surg. Journal,
On the Internal Use of Nitrate of Silver in Cholera. By Mr. Richard Southey, Cambridge.—The nitrate of silver being much more frequently prescribed than heretofore, it may not be uninteresting to some of your numerous readers to learn that the discolorization of the skin is not of that frequent occurrence generally supposed; in fact, large and repeated doses may be given without producing such effect. In the year 1831, when the cholera raged to a frightful extent at the port of St. Petersburgh, I ordered it in grain doses in every case of collapse, and frequently repeated the same quantity every quarter of an hour, without in one instance discoloring the skin. This remedy was mentioned as being very successful, in the report of the Government Commissioners, Drs. Russell and Barry, at the time; and I know of no medicine capable of producing reaction with so much certainty, though this sometimes was sudden and violent, requiring the immediate use of the lancet; and in several cases the inordinate excitement was difficult to suppress, but no discolorization followed.—London Medical Times.

External Use of Nitrate of Silver in Conjunctivitis, by John S. Cameron, M. D.—Dr. Hocken, of London, presented to the profession, some time since, through the Lancet, an article upon strumous conjunctivitis, and a method of cure with nitrate of silver, applied to the outside of the lids.—As I had seen a good deal of the suffering attendant upon the usual application of this remedy, and its doubtful efficacy, this new plan struck me as, on one account at least, preferable to the old. I therefore determined to try it, and have done so, in a variety of cases, not merely of struma, but of acute and chronic inflammation from other causes, even in cases of granular lids, and always with astonishing success. I cannot recall a single instance where more benefit has not followed, than I had been accustomed to expect from the old method. In some cases the intolerance of light, scalding tears, pain, and injection of the conjunctiva have been removed by one application, and the eye almost perfectly restored in twenty-four hours after; and this without the production of the least pain. It is no small advantage of this mode of using nitrate of silver, that no harm can result to the eye by its injudicious use, as may follow the introduction of the caustic into the eye, either in the solid or fluid state.

The manner of using it is to draw a clean stick of pure caustic, previously moistened, once or twice over the lids, keeping them, in the meantime, a little tense; and repeating this, if necessary, in a few days.—N. Y. Annalist.

[We have been pleased with this use of it.]—Edt.

Treatment of Porrigio larvalis by Iodide of Sulphur. (Journal des Connaissances Medico-Chir.)—Dr. Escolar relies chiefly upon Iodide of Sulphur, employed internally and externally, in this very troublesome affection. The ointment he uses is composed of Lard 32 grammes, Iodide of Sulphur 2 grammes, and Essence of Roses 6 drops; at the same time the little patient takes every day about 1 gr.
of the Iodide of Sulphur internally, and a saline purgative each week. Milk for diet, moderate exercise, and extreme cleanliness, he recommends to aid this treatment. By the end of the month the cure is generally affected.

Hydrocephalus cured by Blistering the head.—In the February No. of the Journal des Connaissances Medico-Chirurgicales is a case of hydrocephalus cured by Dr. Salgues. The patient was 5 years old, of good constitution, and had had impetigo for two years. This was suddenly cured by a quack ointment. There occurred from this date the manifest symptoms of hydrocephalus, and by measurement the head was over 59 centimetres. Dr. S. now gave him 8 grs of calomel every fifth day, and a tisane of mucilage with nitre. The head was shaved and covered with a very large blister, which was renewed every eighth day. In six weeks there was a considerable change for the better, and at the end of three months the head measured only 51 centimetres—there being no longer any pathological phenomenon in this case.

Suction of the finger of the accoucheur while the infant was in the womb. (Journal des Connaissances Medico-Chirurg.)—Dr. Hosser, Physician at Saint Omer, was called the 11th of August, at 6 o'clock, A. M., to Mad. Foucault, aged 44, of good constitution, and now in labour for the tenth time. The pains had commenced two hours before his arrival, and the membranes were ruptured. The mouth of the womb was soft, dilatable, and opened about an inch in diameter. A presentation of the face, fronting the left iliac fossa was recognized. The mouth of the infant was opposite the centre of opening of the uterus, the finger entered it easily, and he very distinctly felt a pretty strong suction. The labour pains had then ceased. He renewed this experiment several times, and always found the finger was sucked with some vigor. He allowed nature to manage the case—the position of the presentation was soon changed, and at a little after 11 o'clock his patient was delivered of a remarkable fine child, which though asphyxied at first was soon recovered.

The actual Cautery to the Spine for Leucorrhœa.—Dr. Mitchell, in the Dublin Medical Press, recommends a most energetic treatment in that most obstinate of affections—uterine Leucorrhœa. He heats the actual cautery in a spirit lamp just sufficient for it to act revulsively, and not to destroy the parts touched by it. He applies the heated iron to the lumbar region to four points on each side of the spinal column, and then upon four of the spinal processes of the vertebrae—making thus twelve places. He has employed this means in seventy cases, most of them were cured by a single application, but where granulations existed about the neck of the womb, these were touched by nitrate of silver.

Retention of Urine relieved without having recourse to the Catheter. (Bulletin Général de Thérapeutique.)—Dr. Vanden Broeck says that
large cupping-glasses applied to the superior or internal parts of the
thighs will, nine times in twelve, relieve retention of urine dependant
upon cerebral affection.

Hemorrhage from the Tonsils arrested by the local application of Ice.
(Bulletin Général de Thérapeutique.)—The hemorrhage produced by
excision of a portion of the tonsils is often troublesome, if not even dan-
gerous. The actual cautery has been resorted to in some cases. M.
Chassaingac had to do with one where the operation had been per-
formed eight days before, and the bleeding had not yet ceased. Ice to
the neck, in drink, alum, and various other styptics had been tried in
vain. A piece of lint wetted with lime-juice arrested it for a short
time. A lump of ice was now seized with a pair of Museux’s forceps
(long forceps with double hooks at the extremities) and held perma-
nently upon the point where the hemorrhage escaped, when it ceased
completely.

[We presume pieces of ice were held upon the spot, since one lump
could not be permanently.]—Evr.

Enlarged Parotid cured by Tincture of Iodine.—J. Morrison has
treated successfully, he says, (see Lancet, Jan. 8th,) many cases of
enlarged parotid with tincture of iodine. He paints the tumor with
the tincture, and also gives it internally in doses of ten minims, night
and morning, in cold water.—[Am. Journ. of Med. Sci.

MEDICAL INTELLIGENCE.

The American Medical Association.—This Body will have assembled in Balti-
more by the time this No. of our Journal is distributed. We early offered to
publish any notice in relation to the business of the Association, but have to
state the fact that not until after our last issue, did any information reach us as
to the number of delegates which each College, Society, &c., was entitled to
send; it is now too late for us to do so, since the meeting takes place the first
Tuesday in May. (We have published a notice in the newspapers.)

We don’t expect to get any credit for it, still the fact may be stated, that the
Medical College of Georgia was organized in 1832, upon a six months course
of Lectures. For the five following sessions the lectures commenced the middle
of October of each year, and terminated the middle of April following. Find-
ing our classes did not increase in number, in 1835, our Faculty addressed a
circular to every Medical College in the United States, proposing the six months
course, &c., &c. In compliment to the oldest Institution, the University of
Pennsylvania, the time of meeting and the number of delegates to be appointed
were left to her decision; but her Faculty refused to take any action on the sub-
ject, and we were reluctantly compelled to adopt the four months course. Now
the University of Pennsylvania is claiming priority of movement, and calling
upon the profession to sustain her in the effort to establish the six months
course. When any other College will prove this effort to have been made as
eye early as 1832, and that it was faithfully tried for five consecutive years, the
Medical College of Georgia will yield all her claims to priority of action on the subject.

We hope five months will be the length of the course of Lectures adopted by the American Medical Association. No College has yet proposed six months, and in the South we have no hesitation to say it cannot be carried into effect. We hope some one in the Association will have the candour to admit the object of the preliminary lectures in October of certain Schools of Medicine. We are advocates for the course continuing during the months of November, December, January, February and March, and at four lectures a day.

Two members of our Faculty (Drs. J. A. and P. F. Eve,) will, it is expected, represent the Medical College of Georgia at Baltimore.

Collodion—a substitute for Adhesive Plaster.—We have again the gratification of announcing to the few professional brethren who read our Journal, a new therapeutic preparation in Surgery. It is called Collodion, from kolla, glue; and eidos resembling. It is a solution of gun cotton in sulphuric ether. Applied to wounds, &c., the ether evaporates, and a layer of cotton is deposited upon the surface retaining the opposite edges in contact, protecting the parts under it, &c. A drop or two of Collodion in the hand, closing this until it dries, will at once convince any one of its importance to Surgery. Its retentive powers are very great, and it becomes so adherent to the skin that it is quite difficult to remove it. It is of course insoluble in water.

We have used it in some half a dozen cases, and feel prepared to acknowledge it a very valuable substitute in many cases for adhesive plaster.

It is introduced to the profession by Dr. S. M. Bigelow, in the Boston Medical and Surgical Journal. A Mr. Maynard, of Boston, has also set up a claim to its discovery. To Dr. Barry, apothecary, of this city, we are indebted for our supply.

OUR EUROPEAN CORRESPONDENT—LETTER III.

By the arrival of the last Steamer, we have received the following letter from our correspondent at Paris—an attack of rheumatism had interrupted his writing.

SURGICAL REPORT OF THE FRENCH REVOLUTION—CLASSIFICATION OF GUN-SHOT WOUNDS, &C.

PARIS, (FRANCE,) March 2d, 1848.

Gazette des Hopitaux, La Charité—M. Veloque; Wounds from fire-arms; Classification; Question of immediate or secondary amputation.—Among the general questions relating to gun-shot wounds, one of the most important is without contradiction, that which treats of the necessity of amputations in cases of this kind. The wounds that one observes in war, ought to be divided into two great classes: sword and bayonet wounds (armes blanches) and gun-shot wounds proper. The first differ little from those we see in ordinary practice. Of these we will say nothing. The second, on the contrary, present peculiarities. They can be arranged into two categories—wounds of limbs and wounds of visceral cavities; these last (other things being equal) are more serious than the first. Let us occupy ourselves first with wounds of the limbs. Here we establish two classes: wounds produced by a ball, which has penetrated the limb from side to side; and wounds produced from a ball which has only entered the limb. These latter are less serious in general than the first. In short, whatever be the course that the ball has followed, generally the wound involves but one tissue—the cutaneous sub-cellular; the vessels and nerves having escaped. The wounds which perforate the limbs from side to side, can be in their turn subdivided, into simple
and complicated. They are simple when the vessels, the nerves and bones have not been injured; and complicated in the opposite condition. And here we shall subdivide this latter class, according as there is an injury of the vessels, of the nerves, or even of the bones. Wounds of the nerves expose the patient, it is true, to partial paralysis, that of the vessels, to hemorrhage more or less considerable, and may require ligatures. These accidents are very serious; but fractures by a ball are still more so. In fact, the severity of these latter cases, proceed from suppuration in the bed of the fracture—from the contusion of the soft parts by the fragments; but these fractures taking place most frequently by indirect causes, there is no contusion of the bones, while in the cases of which we are at present speaking, there is contusion and mortification of all the tissues. The necessary suppuration here ought to take place in all the thickness of the limb, comprising the bone which is necessarily rendered carious and necrosed.

If there is a wound of a limb, which has two bones, and if only one bone is involved, it is less dangerous than a similar wound of the portion of the limb constituted by a single bone; for in the first case, the sound bone serves to support the other. Besides, the position of the wound influences our prognosis; thus, the middle part is less dangerous than near an articulation. It may happen that the bone is penetrated by the ball, without its continuity being destroyed. M. Velpeau saw three cases of this kind, in 1830. Or the destruction of the bone may be confined to its border, so as to form a gutter near or less deep. Other things being equal, wounds of the lower limbs are more dangerous than those of the upper extremities. Fractures of the thigh are more dangerous than those of the leg. It is not the same in regard to the upper extremity; fracture of the arm and forearm are of equal severity. Of all kinds of fractures, the most dangerous are those of the thigh, for these are almost always comminuted, and numerous splinters pass into the soft parts. In short, this region is constituted by a single bone of a tissue very compact, and much disposed to break into fragments and surrounded with numerous and powerful muscles, with much cellular tissue, large vessels and nerves. There is suppuration—the pus infiltrates itself, burrows upwards and downwards, and one understands then the danger of this kind of fracture.

Of immediate and secondary Amputations.—These observations permit us now to discuss the question relative to the necessity of amputation. Is it better to amputate on the field, limbs that leave but little hope that they can be preserved, or is it better to wait some time, and to operate only when amputation has become absolutely necessary? In other words, this is the question of immediate or secondary amputation, the subject of the discussions of the Academy of Surgery, and of the memoirs of Faure and Boucher. Boucher said that if amputation was judged necessary, it ought to be performed immediately; Faure maintained on the contrary, that it was better to wait, seeking to preserve the limb, and not amputating but at the last extremity. These two surgeons, besides, have very well noted, that in these wounds there are several periods for the operation. In the first, which lasts from some hours to two days, there is an excitation, a general shock, physical and moral, to which succeeds a certain state of stupor; after an operation, we do not observe fever, and there is more chance of success according to Boucher. The second period, the period of inflammation, arriving the 12th or 16th day, is analogous to that which we admit for burns. (Here M. Velpeau endeavors to establish a strong resemblance between gun-shot wounds and certain burns.) In the two cases, there is developed a work of separation, having for its end to detach and expel from the tract of the ball, the mortified tissue. This period has several phases: first, one observes inflammatory accidenis, which last two or three days; a fetid, blackish discharge proceeds from the wound; then true pus is formed, and we enter into the period of that of suppuration. Meanwhile, we can say, in the first place, that amputation in the inflammatory period is performed in unfavorable conditions, this is generally admitted, and with reason, for inflammation already existing, does not disappear under the influence of the operation, but is increased by the surgeon. Velpeau is here of the opinion of Faure, if we do not amputate in the first period, it is better to wait until the third. But it is very difficult to decide positively this question. First, one can scarcely determine "in advance" whether there will be a possibility or not to preserve the limb: there are chances for or against it,
but the results, in a certain number of cases, weaken the prognosis. Faure
says, that in amputating tardily, we preserve all the limbs that we would have
improperly removed: Boucher replied, that by this method, we saved much
fewer of the wounded. Thus, take 100 wounded, if you amputate all immedi-
ately, you cure 90, for example; if, on the contrary, you amputate only second-
arily, you will preserve the limbs of 25 wounded—but, of the other 75, there
will die 25. The figures are purely suppositions; but something analogous ex-
ists, and suffices to shew the complexity of the question, and to explain the long
discussions of the Academy of Surgeons, on this subject. For fractures of the
femur, all military surgeons, Larrey, Percy, Ribes, are unanimous and agreed
on the necessity of immediate amputation. Notwithstanding, in 1830, some of
the surgeons of Paris (non-military) did not submit in an absolute manner to
this rule, and they sought to preserve the limbs. At this period, M. Velpeau,
among 12 or 15 patients, preserved the limb twice, and had to practice four or
time five secondary amputation. How do we know, that if all of them had
been subjected to immediate amputation, eight or ten would not have survived?
Absolutely, one does not lose more patients, among those who submit to second-
ary amputation, than among others that undergo immediate amputation. But
this is not the point of view in which the question ought to be considered. The
matter to be determined, is to ascertain whether the patients that had not suffer-
ed amputation, and who sunk before the arrival of the epoch of the secondary
operation, might not have survived if they had been amputated immediately.
This is the great question to decide. But there are cases where amputation is
formally indicated. Seven or eight of our patients are in this position. Several
have refused to be operated on, and now it cannot be done. It is necessary to
wait till the third period.

Complications of Gun-shot wounds—Gangrene, divisions, etiology; diagnosis—
Hemorrhage.—As complications of wounds by fire-arms, we ought to note stupor,
agitation, hemorrhage, and gangrene. We have already, twice observed this
last condition. One can distinguish in gun-shot wounds, two kinds of gangrene
—one may be called direct, the other indirect. The first takes place necessarily
—it is that which we observe on the level of the wound itself. Gangrene de-
ponds, generally, on three orders of causes: wounds of vessels, of nerves, and
contusion of the soft parts. Injury of arteries alone is not a sufficient cause of
gangrene; but if the vein, or the principal veins, are involved, there is a great
probability that mortification of the limb will ensue. Thus, in the operation of
ligature, take care not to tie the veins along with the artery. After the ligature
of the artery, the blood continues to circulate by the collateral branches, but it is
necessary that it returns to the heart, and this can only take place through the
veins; but these conversely to the arteries, go on reuniting instead of dividing:
the collaterals become fewer in number from below upwards, and the circulation
cannot be continued by their means. If the wound exists in a limb, where there
are several important arteries, in the thigh, for example, and that but one of
them only is injured with its corresponding vein, it is not entirely of the same
importance, for there are several orders of veins: the saphena, with its anasto-
moses, the accompanying vein of the profunda femoris, might supply the prin-
cipal vein. The division of the nerves may also lead to gangrene, but this does
not occur where there are several important nerves in the member, as in the
arm, for instance. There the division of the median or radial, or of any other,
does not cause mortification of the arm; but this might take place if they were
all divided. The injury to other tissues may give rise to gangrene, but only in
the case where the injuries are considerable. The injury of the skin alone, or of
one or several muscles, the fracture even of a bone with splinters, is not in gen-
eral followed by indirect gangrene; but it will be quite otherwise, if several of
these are involved at the same time, and especially if also the vessels are wound-
ed. The diagnosis of declared gangrene is not difficult, but it would be import-
ant to foresee its beginning, which is not easy, for that depends generally on the
nature of the wound, and it will be necessary always to determine it exactly.
If the ball has caused great damage; this can be easily ascertained, if on the
contrary, there is injury of the vessels, of the nerves, of the bones, it is often dif-
ficult to ascertain the state of the parts. When there is paralysis, one may be
guided by the anatomical knowledge, and thus determine the nerve or nerves
wounded. When there is arterial hemorrhage, we ought also to find out what artery is wounded, but here a certain difficulty presents itself: first, it is necessary to learn if the hemorrhage is arterial or venous, and this is often very difficult. Such is the case of one of our own patients. M. Velpeau is satisfied that there is not here injury of a large vessel, for the pulse is preserved and the hemorrhage has not returned; but this is not conclusive, the artery may be obliterated, and the circulation re-established by the collaterals.

Gazette des Hopitaux, 11th March—M Velpeau on Gangrene; prognosis, treatment.—Is it necessary to amputate immediately, or wait the limitation? The prognosis of the gangrene comprehends two elements: the danger of gangrene in regard to the member, and its danger in relation to the life of the patient. The gangrene that supervenes in consequence of wounds by fire-arms, is more dangerous than that arising from ordinary wounds; but there is a kind of gangrene still more formidable, viz., that which is spontaneous. It is necessary that the mind be well penetrated with the distinction of gangrene into spontaneous and accidental. The spontaneous gangrene is the more dangerous; first because it is connected with a general cause, a bad constitution; also, because it depends generally on an organic lesion of the vessels; such as arterites, chalky degeneration, or tuberculosis of the arteries. Against this kind of gangrene we can do nothing. Accidental gangrene, although it may be very dangerous, is not as much so as the spontaneous; for if it also takes its source in the alterations of the soft parts, the vessels, nerves, &c., we may hope at least that this traumatic injury will not extend itself, and that the mortification will remain limited. In the accidental gangrene, there are still varieties as to degree of dangers. Thus it is evident that its seat and its extent will modify the prognosis. The gangrene of the toes, is less dangerous than that of the legs, &c. We have already said that gangrene from fire-arms, is more alarming than that from ordinary wounds, and that among the cases of the first category, those where the wound has been produced by the discharge of an howitzer, is the most dangerous, because these projectiles can scarcely injure exclusively the vessels or the nerves, and that all the tissues participate in general with the disorder; in short, one of the causes which contribute to render serious the prognosis in gangrene by fire-arms, is the general infection which may show itself, and influence unfavorably the economy. In the midst of all this, there is a prognosis which scarcely varies—it is that which regards the fate of the limb itself, the gangrenous part is ultimately lost. We arrive, meanwhile, at the question of treatment—a question which governs the others—What is it necessary to do? Ought the mortified parts be amputated, or will it be better to leave them to fall of themselves? Formerly, surgeons preferred to leave to nature the care of detaching the dead parts, rather than to practice amputation. Now, this opinion is generally abandoned—first, because having at our disposal the ligature, torsion, &c., one no longer fears hemorrhage in amputations. In short, because in following the ancient method, the bone makes a considerable projection, and we obtain a stump very deformed, giving place to great inconvenience. Meanwhile, this question presents itself: Ought we to amputate during the progress of gangrene, or is it better to wait until its progress be arrested; in other words, to wait for its limitation? In favor of this lastopinion, several arguments have been produced:—first, gangrene is a cause of gangrene; that is to say, that it propagates itself; there exists a sort of molecular alteration of the parts, so that the gangrene shows itself, in spite of amputation. Further, it happens often that the vascular injury, the arterial obliteration extends itself more or less above the apparent gangrene so, that in operating on parts extremely sound, we operate, in short, below the obliteration, and so that the gangrene may appear in the stump. In the third place, it is said that in wounds by fire-arms, there exists a commotion, a shock, a state of stupor, a sort of poisoning; so that before such a general state, we cannot know where the gangrene will stop, and amputation, in fact, will serve only to hasten death. There is in all this something of truth, but it is necessary to return to the division established at the commencement of this lesson. In spontaneous gangrene, in gangrene following organic injuries of an artery, it is better to wait the limitation, but in the gangrene from external injury, from bruises, &c., M. Velpeau thinks that it is better to hasten the operation, and precisely for one of the reasons used in support of the opposite opinion, for gangrene is the cause of gangrene
and the best means to protect the best of the limb from this dangerous tendency, is to remove the mortified part. Besides, a gangrenous member is still more than the wound itself a formidable bed of general infection. In short, there is a kind of reaction against the tendency to mortification of neighboring parts, which concurs also to weaken the patient. It is a distinction made by Larrey.

Comparison of the Treatment of Gun-shot wounds at Hôtel-Dieu, La Charité and Val-de-Grâce.—The patients wounded during the three days, recovered badly; a larger proportion than usual have died: this might be expected, as the wounded were all inhabitants of Paris and mostly ill-fed and ill-lodged. Velpeau's patients have done worst of all—the beds in La Charité are greatly crowded and not a particle of fresh air is ever admitted by any accident; he makes great use of heavy flax-seed poultices, with great quantities of lint enveloping the whole limb, and if fracture of a bone happens to exist, then, in addition to all this, we have splints, lots more of lint and bandages. Blandin, at the Hôtel-Dieu, has been a shade more fortunate than Velpeau. Roux's cases have generally done very well—all three had each an amputation at the shoulder-joint—Roux's patient, quite a young man, alone survives. Fortunately, the number of wounded altogether is not considerable, for the total amount in all the hospitals, on the 25th of February, was no more than 438; there were more than 500 at Hôtel-Dieu alone in 1830. Jobert applied to the wounds cold poultices, frequently renewed, in some cases where inflammatory action was high, he applied ice. When inflammatory action began to manifest itself the cold poultices were replaced by tepid ones containing a little laudanum. The fractured cases, as usual with him, were treated by simple and permanent extension. On the 15th March, I went across to Val-de-Grace and saw the patients—they had been treated by bleeding, leeching, purgatives and low diet, in the first instance, while at the same time lint was laid over the wounded part, and on this a current of iced water was directed—the limbs were placed in an easy posture on cushions impervious to water. This treatment was continued while the inflammatory stage lasted—afterwards light dressing and bandaging were employed. The patients have recovered—it is admitted on all hands, much better at this military hospital than at any other of the hospitals in Paris: the situation is high and surrounded with gardens and a large open space—the wards are large, high in the roofs, and well ventilated—the number of beds is proportionably small; and to these circumstances perhaps more than to the mode of treatment, the more rapid recovery of the patients is attributable. Velpeau declares that the iced-water treatment has not been found to answer well elsewhere. Several of the patients at Val-de-Grace had a ball lodged in the chest, others in the thigh, &c., and were doing well. The only serious case, was that of a young man whose elbow joint had been shattered, the ends of the bones had been removed, and the wound had an unhealthy, flabby appearance—the young man was much exhausted.

Paracentesis Thoracis in Pleurisy.—I witnessed an operation of Paracentesis Thoracis. The patient had been laboring under an attack of pleurisy of the left side, for nearly two months—considerable effusion had occurred and the heart was displaced towards the right side. The operator used a small, flat trochar; the skin was drawn upwards, and the instrument entered obliquely for more than an inch, previously to perforating the intercostal space between the 8th and 9th ribs and in the posterior region of the thorax; a large basin full of serum, mixed with a few flakes of lymph, was withdrawn. The heart speedily returned to its normal position, and a distinct "bruit de frottement" was perceived in the anterior region of the left side of the chest. This operation is often performed in Paris, sometimes as early as the 12th or 15th day of the pleurisy, and indeed whenever the presence of a considerable quantity of liquid is detected. Unless the amount of fluid is very great, the patients seem to obtain immediate relief and recover rapidly. Many valuable lives might be saved, were this simple operation more frequently performed. Not long ago, a similar operation was successfully performed at Val-de-Grace, on a soldier 33 years of age, who had had chronic pleurisy of two years duration; he was two months and a half under treatment, without any beneficial result; the puncture was made in the 5th intercostal space; immediately the canula gave issue to a seropurulent, greenish fluid, sensibly alkaline charged with albumen, enclosing a
great quantity of pus globules. The use of gold-beater's leaf, to surround the canula, ought never to be neglected, as it permits of the escape of fluid and hinders the entrance of air. A month after the operation, the patient was completely restored to health. M. Louis says, that when pleurisy is simple, and not complicated with pulmonary tubercles, it terminates always happily, and that therefore it is useless to puncture. But to this many exceptions exist, where the effusion persists in spite of the most active treatment.

Yours, O. P. G.

New Anaesthetic Agents.—We observe that M. Pogiale, Professor of Chemistry at Val-de-Grâce, in Paris, has announced to the Academy of Sciences, that he has found the inhalation of the vapour of aldéhyde promptly followed by the most complete insensibility. He says its action is more prompt and energetic than either ether or chloroform. It is more economical than chloroform. It is prepared by distilling a mixture of sulphuric acid, water, alcohol and peroxide of manganese, and rectifying the condensed fluid with chloride of lime. Aldéhyde thus prepared at the temperature of 82° Fahrenheit, contains only a small portion of alcohol and formic ether.

A German chemist also proposes the vapour of Sulphate of Carbon.

MISCELLANEOUS MEDICAL ITEMS.

It has just been decided by the School of Pharmacy of Paris, to have placed upon its walls, the portrait of Nicholas Courtois, the discoverer of Iodine, in 1811. He is said to have lived and died in obscurity. It is thus with the world. The man who will nobly and liberally give to society an important invention or discovery will too often be neglected and suffer in absolute penury, while the quack, from his worthless nostrum, may indulge every luxury.

Velpeau has lately expressed in the Academy of Sciences, his decided opinion in favor of chloroform over ether.

Prof. Béard, of Paris, is publishing his Lectures on Physiology, and the impression is made that he designs retiring to private life.

Philip Boyer, son of the old veteran, Baron Boyer, has lately had the eighth successful amputation of the thigh—a success unprecedented for Paris.

Gutta Perka, known to Europe since 1843, is being now used for various surgical purposes, as in the treatment of fractures, in the construction of bougies, pessaries, &c. It is the lactescent juice of a tree found in Singapore. At the temperature of 50 Fahrenheit, it is as hard as wood, but becoming soft as wax below the temperature of boiling water. It is insoluble in water, but is dissolved by chloroform.

Prof. Béard, Dean of the Faculty of Montpellier, was recently dismissed from his office for his liberal principles, by the Ministry of Louis Philippe. But they in their turn being deposed by the people of Paris for their illiberal actions, the old Dean has been reinstated by the new government of France.

Prof. Orfila, Dean of the Faculty of Paris, has been dismissed from his office, and Prof. Bouillaud appointed in his place.

Stromeyer has succeeded Dieffenbach at Berlin.

There are 454 Students of Medicine in the school at Constantinople.

In Russia, Physicians alone can resort to anaesthetic means. No dentist or midwife is permitted to use chloroform or ether, except in the presence of and under the authority of a regular educated doctor.

The Society of Medicine of Strasbourg has decided upon the proposition of Prof. Sédillot to raise a subscription to be presented to Dr. Jackson of Boston, the inventor, say they, of the application of ether as an anaesthetic agent.

M. Jobert (de Lamballe) is editing a work entitled Summary of Surgery, by J. Lisfranc. Our readers will recollect that the great Surgeon Lisfranc died last year in Paris, with the regret that his work on Surgery was not completed.
Dr. Lesserré, captain in the 3d Legion of the National Guards of Paris, and dangerously wounded by a musket ball through his thigh, has been promoted to the rank of colonel, as a recompense for his devotion to the French Republic.

Among the candidates for representatives to the Convention to organize the Republic of France, we see the names of five physicians, among them are Rostan and Sandras. In the address of Prof. Rostan, he says, the convictions of my whole life have been that a Republic was the only government proper for France—that it is the one under which the greatest number will receive the greatest good—that he owes nothing to any government or monarch—that the little he possesses in this world was obtained by his own individual efforts; having secured his professorship in the school of Medicine of Paris by concour, &c.

The number of wounded during the late French revolution received into the civil and military hospitals of Paris, amounted to 521.

METEOROLOGICAL OBSERVATIONS, for March, 1848, at Augusta, Ga. Latitude 33° 27' north—Longitude 4° 32' west Wash. Altitude above tide 152 feet.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>46</td>
<td>29 82-100</td>
<td>53</td>
<td>29 87-100</td>
<td></td>
<td>e.</td>
</tr>
<tr>
<td>2</td>
<td>43</td>
<td>“ 85-100</td>
<td>63</td>
<td>“ 85-100</td>
<td>s. e.</td>
<td>Fair afternooon.</td>
</tr>
<tr>
<td>3</td>
<td>41</td>
<td>“ 83-100</td>
<td>61</td>
<td>“ 83-100</td>
<td>w.</td>
<td>Cloudy—sprinkle.</td>
</tr>
<tr>
<td>4</td>
<td>40</td>
<td>30 4-100</td>
<td>58</td>
<td>30 6-100</td>
<td>N.</td>
<td>Fair.</td>
</tr>
<tr>
<td>5</td>
<td>43</td>
<td>29 92-100</td>
<td>50</td>
<td>30 1-100</td>
<td>N.</td>
<td>Cloudy—blow.</td>
</tr>
<tr>
<td>6</td>
<td>28</td>
<td>30 15-100</td>
<td>56</td>
<td>30 17-100</td>
<td>s.</td>
<td>Fair.</td>
</tr>
<tr>
<td>7</td>
<td>30</td>
<td>30 6-100</td>
<td>64</td>
<td>30 3-100</td>
<td>s.</td>
<td>Cloudy.</td>
</tr>
<tr>
<td>8</td>
<td>42</td>
<td>29 88-100</td>
<td>68</td>
<td>29 73-100</td>
<td>s.</td>
<td>Cloudy.</td>
</tr>
<tr>
<td>9</td>
<td>56</td>
<td>“ 55-100</td>
<td>57</td>
<td>“ 47-100</td>
<td>s.</td>
<td>Rain, 90-100 of an inch.</td>
</tr>
<tr>
<td>10</td>
<td>41</td>
<td>“ 53-100</td>
<td>57</td>
<td>“ 66-100</td>
<td>w.</td>
<td>Fair—high wind.</td>
</tr>
<tr>
<td>11</td>
<td>36</td>
<td>“ 45-100</td>
<td>60</td>
<td>“ 96-100</td>
<td>s. w.</td>
<td>Fair.</td>
</tr>
<tr>
<td>12</td>
<td>40</td>
<td>30</td>
<td>65</td>
<td>“ 97-100</td>
<td>s.</td>
<td>Fair.</td>
</tr>
<tr>
<td>13</td>
<td>51</td>
<td>29 93-100</td>
<td>65</td>
<td>“ 92-100</td>
<td>N. w.</td>
<td>Fair—high wind.</td>
</tr>
<tr>
<td>14</td>
<td>34</td>
<td>30</td>
<td>48</td>
<td>“ 95-100</td>
<td>N. w.</td>
<td>Fair—thick ice.</td>
</tr>
<tr>
<td>15</td>
<td>32</td>
<td>29 86-100</td>
<td>54</td>
<td>“ 86-100</td>
<td>N. w.</td>
<td>Fair—high wind.</td>
</tr>
<tr>
<td>16</td>
<td>30</td>
<td>30 11-100</td>
<td>51</td>
<td>30 3-100</td>
<td>N. e.</td>
<td>Fair.</td>
</tr>
<tr>
<td>17</td>
<td>32</td>
<td>29 88-100</td>
<td>66</td>
<td>29 63-100</td>
<td>s. w.</td>
<td>Fair—high wind.</td>
</tr>
<tr>
<td>18</td>
<td>54</td>
<td>“ 60-100</td>
<td>69</td>
<td>“ 60-100</td>
<td>s. w.</td>
<td>Cloudy—high wind.</td>
</tr>
<tr>
<td>19</td>
<td>56</td>
<td>“ 75-100</td>
<td>74</td>
<td>“ 77-100</td>
<td>s.</td>
<td>Cloudy—high wind.</td>
</tr>
<tr>
<td>20</td>
<td>58</td>
<td>“ 79-100</td>
<td>69</td>
<td>“ 80-100</td>
<td>s.</td>
<td>Cloudy—sprinkle. [P.M.—55-100</td>
</tr>
<tr>
<td>21</td>
<td>62</td>
<td>“ 82-100</td>
<td>79</td>
<td>“ 75-100</td>
<td>s. w.</td>
<td>Cloudy—high wind—storm at 6,</td>
</tr>
<tr>
<td>22</td>
<td>59</td>
<td>“ 68-100</td>
<td>61</td>
<td>“ 61-100</td>
<td>s. w.</td>
<td>Cloudy.</td>
</tr>
<tr>
<td>23</td>
<td>56</td>
<td>“ 68-100</td>
<td>75</td>
<td>“ 80-100</td>
<td>w.</td>
<td>Fair.</td>
</tr>
<tr>
<td>24</td>
<td>50</td>
<td>“ 99-100</td>
<td>72</td>
<td>“ 98-100</td>
<td>e.</td>
<td>Fair.</td>
</tr>
<tr>
<td>25</td>
<td>52</td>
<td>30</td>
<td>71</td>
<td>“ 98-100</td>
<td>s. e.</td>
<td>Fair.</td>
</tr>
<tr>
<td>26</td>
<td>54</td>
<td>29 87-100</td>
<td>78</td>
<td>“ 83-100</td>
<td>s. w.</td>
<td>Fair—some clouds.</td>
</tr>
<tr>
<td>27</td>
<td>58</td>
<td>“ 69-100</td>
<td>81</td>
<td>“ 62-100</td>
<td>s. w.</td>
<td>Fair.</td>
</tr>
<tr>
<td>28</td>
<td>60</td>
<td>“ 71-100</td>
<td>78</td>
<td>“ 71-100</td>
<td>s. w.</td>
<td>Fair—rain during night 25-100.</td>
</tr>
<tr>
<td>29</td>
<td>62</td>
<td>“ 85-100</td>
<td>71</td>
<td>“ 90-100</td>
<td>s. w.</td>
<td>Cloudy.</td>
</tr>
<tr>
<td>30</td>
<td>60</td>
<td>“ 96-100</td>
<td>63</td>
<td>“ 96-100</td>
<td>N. e.</td>
<td>Cloudy—sprinkle.</td>
</tr>
<tr>
<td>31</td>
<td>62</td>
<td>“ 94-100</td>
<td>81</td>
<td>“ 87-100</td>
<td>s.</td>
<td>Cloudy—rain last night 5-100.</td>
</tr>
</tbody>
</table>

17 Fair days. Quantity of Rain 1 inches 75-100. Wind East of N. and S. 6 days. West of do. do. 15 days.

Equinox of the 23d, 6, a.m. Wind S. E.—just stopped raining.

9, a.m. Ther. 62, Bar. 69-100. Wind S.

12, m. “ 66, “ 67-100. “ S. W.

6, P.M. “ 67, “ 63-100. “ S. W.

Being a very cloudy but calm day. There was a storm from the N. W. last evening at 6, p. m.