SOUTHERN

MEDICAL AND SURGICAL JOURNAL.

EDITED BY

PAUL F. EVE, M. D.,
PROFESSOR OF SURGERY IN THE MEDICAL COLLEGE OF GEORGIA,
AND ONE OF THE VICE-PRESIDENTS OF THE
NATIONAL MEDICAL ASSOCIATION.

Medical College of Georgia.

"Je prends le bien où je le trouve."

VOL. IV.—1848.—NEW SERIES.

Augusta, Ga.
JAMES McCAFFERTY,
PRINTER AND PUBLISHER.

1848.
SOUTHERN MEDICAL AND SURGICAL JOURNAL.

Vol. 4.] NEW SERIES.—NOVEMBER, 1848. [No. 11.

PART I.—ORIGINAL COMMUNICATIONS.

ARTICLE XLVII.

Bilious Remitting Fever—its sources. By Tomlinson Fort, M. D., of Milledgeville, Georgia.

The frequent occurrence, wide extent, and formidable character of this disease, justify an accurate account of its causes, and treatment. I have said that the varieties of fever which arise from malaria, whether it be a real or imaginary cause, cannot be accurately defined. Yet I have divided the subject, and have no doubt, shall be able to treat of it, more perspicuously and more usefully by so doing. By far the most important of these divisions is bilious fever, under which name I propose to treat of all malarious fevers having remissions and exacerbations. This class will include, the autumnal, bilious remittent, pernicious intermittent, congestive, and I know not how many more varieties of fever which have been described by authors.

Intermittent fever is excluded from this class, because of its mild character, and long duration, but there will occur cases which it will not be easy to assign to one of these classes rather than the other. Arising from the same cause, they run insensibly into each other, so that there can be no perfect discrimination.

History of Bilious Fever in Milledgeville and its neighborhood.—In a state of nature this was a rich, variegated country, covered with majestic forests and tall waving grass. The low lands on the sides of the streams, were covered with heavy
cane brakes, or unbroken beds of reeds. Such was Milledgeville and the contiguous country till about the year 1807, when it became the residence of the white man. In this state of primitive grandeur and unequalled beauty, this country was decidedly healthy. I was here soon after the Indian inhabitants had left it. I witnessed its rapid settlement—the destruction of its forests—the extermination of its canebrakes, its reeds and its grass—and the laying bare of its bosom to the sun.

Bilious fever appeared as suddenly, as the face of nature had been changed by the hand of man. For eighteen years it was a formidable epidemic, during the summer and fall seasons. The mortality was greatest where the lands were most fertile. Milledgeville, located on a spot of great fertility, was perhaps the greatest sufferer. No tables of mortality, were kept, but I cannot be mistaken in placing the deaths from bilious fever alone, as high as five per cent. of its whole population, each year from 1808 to 1812 or 13. This mortality happening in a few months, gave to the disease the terror of a pestilence. Forty years have now elapsed, and great has been the change in the face of this country. It has been reduced in many places almost to sterility. Its gullied hills and deeply sanded bottoms have become dry. The bilious fever has almost ceased its annual visit. The annual deaths in Milledgeville from this cause, which I have said were at one time as many as five in the hundred of its population, have gradually diminished,—so that within the last five years they have not exceeded one in two thousand. The facts which have attended this great change cannot be uninteresting.

Causes.—If there were no summer, there would be no bilious fever. But to what degree the thermometer shall rise, or how long continue, at any degree of heat to produce this disease, is not ascertained. The process is, I think, not sudden. I have seen in the month of June, the river overflow its banks and subside under the greatest heat of summer. No fever appeared for five or six weeks, but its onset was then sudden and violent, and it only subsided on the coming of frost. No example is given of the appearance of this disease in winter,
except in persons who had contracted it beforehand; nor is it agreed, what length of time the infection may remain in the system.

So far as it regards climate, it appears that summer heat, and moisture must combine to produce bilious fever—before absolute dryness or thorough wet, it equally disappears. I have seen bilious fever appear in July, disappear in the driest and hottest weather of August, and re-appear on the coming of rainy weather in the next months. These observations are not new. In the East, it has been remarked that the overflowing of the Delta of the Ganges and Indus, is the signal of returning health to their inhabitants.

Malaria.—An Italian physician has the credit of having suggested as the cause of bilious fever, an effluvium or emanation from decaying vegetable matter in marshes. Chemistry has never detected this malaria, and many are disposed to doubt its existence. The circumstances connecting the existence of bilious fever with the state of adjacent lands or marshes have been investigated with great care, and the belief that the cause of the disease is to be found in the state of these places, is general. I am free to confess, that the facts I have witnessed go far in my mind, to corroborate this doctrine. At the same time I desire to say that I see no proof that the production of this malaria, or miasm is a mere chemical process. We know enough to satisfy us, that there are in nature, besides gravity, other powerful agents which totally elude our research. The cause of small pox, which emanates from a diseased person, and, at some distance, produces the same disease in one which was well, has defied chemical detection as much as the malaria of marshes. Whether it is a fluid or aeriform matter, or an influence extending itself on principles yet unsuspected, is entirely unknown.

What I wish to enforce is, that so far as the cause of bilious fever is concerned, we know enough of it, to protect ourselves from its power in almost any country: and that he who can place this knowledge in the custody of those to whom it will be most useful, will render an important service to mankind. To aid however slightly, in this great object, I shall without
much comment, mention the principal facts I have witnessed, which carry in their mere statement, important information.

Locality. The people of the south almost universally believe, that bilious fever arises from the influence of humid places. Mill ponds are universally regarded as nuisances, and many have been legally abated, on the ground of their causing fever. The valleys of rivers, and smaller streams, lie under the same distrust. Ponds of water, especially lime sinks, are perhaps the most distrusted. A vast experience and enormous loss of life, have given strength to these opinions. They are in the main, well founded. But there are many places which seem to be harmless, in spite of the existence of these causes, and it is of some importance to know why it is so—why one pond should produce disease and another not. A pond whose water is always of the same elevation and covers the same ground, will not produce fever. One surrounded by alluvial sands, and having for its bottom a white or light blue clay, though its soil for a foot or more be of half decayed aquatic plants, may dry up in the heat of summer and yet produce no fever. I have witnessed many examples of this; in the country stretching across a few miles below the falls of our rivers, where the long leaved pine covers the surrounding country. In this same region, mill ponds are equally innocent. If their streams are short and do not arise in the granite hills, and they are not too near the river, they may rise or fall, be full or empty, and the surrounding inhabitants will be unaffected. The sides of these streams running through this country, present in rare instances a mild remittent.

Milledgeville and its neighborhood, which from the scene of my observations, afford the greatest variety of soil and situation. The town lies on a primitive foundation, with soil of rich clay loam, subject to wash into deep gullies when the surface is once broken. The country around, and especially along the streams which enter the river near this place, is hilly and has the same predominant feature of a soil formed on tenacious clay. Lower down, the face of the country suddenly changes. The margin of the ocean was once here, and the rolled gravel, and accumulated sand, form soil for the lof-
ty pine forests which extend to the seaboard. A close observation shows that the change for a few miles is only on the surface, and that on penetrating the earth only a few feet, the rock is still in its original position. It is no longer granite, but changes to gneiss, mica slate, and clay slate, in a few miles. Through such lands the streams are crooked, and the hills abrupt; but no country is better drained, better watered or more healthy. I know many places where the inhabitants have for half a century, lived totally exempt from bilious fever, even in its mildest form.

Far different has been the experience of those who settled the richer lands, founded on clay and presenting a more inviting aspect. The rich loam was no sooner broken, than fever made its appearance. It was more violent along the sides of the streams, and worst where the valleys of those streams were wide, and too wet for the growth of crops without draining. The cane which grew thick on these lands, was suddenly destroyed and the soft mud laid bare to the sun. These places were regarded as the chief source of the malaria, which annually produced such alarming effects. But the fevers of those years, did not always seem to depend on contiguous marshes, rivers or mill ponds. The newly broken soil in the clay lands, seemed in some instances, to produce the same effect. The gray sandy lands when remote from marshes, were most healthy, and as I have remarked in some cases entirely exempt from this disease.

The inhabitants of Milledgeville suffered their full share, of the ills of a bad location in a new country. Situated on the Southwest bank of the Oconee River, on a soil very fertile, and formed chiefly of clay, it could not well escape the evils of a sudden settlement and clearing of the land. The sloping banks of the river, the water of which rises nearly thirty feet in the highest freshets, would, when rendered bare of its original rich vegetation, be a great source of the causes of disease of which we have been treating. It is certain that at the time the population of about two thousand, was cutting down the forest, erecting houses, plowing new fields and allowing their cattle and horses to destroy the reeds and grass which were the natural covering of the land, they suffered the annual invasion of bilious fever in its worst form.
Districts of country. From the earliest times, the term sickly country, has been applied to places subject to the various forms of bilious fever. Dr. Watson in his summary of the opinions of enlightened travelers of the present day, says that the inhabitants of such countries are represented as being "puny, sallow and sickly; feeble in body and spiritless in mind; having yellow faces, swelled bellies, and wasted limbs; subject to dropsies and fluxes; phlegmatic, melancholy and short lived." This picture is drawn from the most unhealthy regions, but it must be acknowledged, we have many places whose inhabitants exhibit too many of the symptoms described. Every one will acknowledge the importance of avoiding evils so appalling.

Sicily was considered by the Greeks an unhealthy country, and one of their writers adds, that the most sickly parts, were those in which the wells were shallowest. This remark holds true within the compass of my observation, with but few exceptions. The islands of our coast which are composed of sea sand, and have on them only the water which falls in rain, are healthy, though the wells are very shallow. But there are exceptions, to the healthfulness of the islands of our sea coast. Those of South Carolina are considered very unhealthy. The cause of this, has not been well ascertained. I have no doubt that a stratum of marl or clay, will be found, at a greater or less depth, below the surface, of these sickly islands. This is the common cause of the unhealthiness of similar localities.

The formation of peat is hindered in southern latitudes by the extremes of heat and drought. It never occurs in places sometimes overflown and at other times dry. The presence of peaty earth proves the absence of putrefaction. The great Dismal Swamp, at the south of the Chesapeake Bay, has been often referred to, as the most extensive and healthy region of peat in the south. I know thousands of acres of similar lands located in our sandy pine woods, which have proven equally innocent. But I have witnessed the clearing of some of the lands, around the streams furnishing these peat mosses; and the consequent frequent overflow of them by muddy water and sand, and finally a change in the people of the neighborhood from health to sickness.

But we will return to the general fact, that very shallow
wells indicate a very sickly country. To this I know no exception, except such as have been mentioned. The sea coast of the Carolinas and Georgia, give extensive exemplifications. The soil of this whole region is sandy, but is, I believe, universally underlaid by a stratum of alluvial clay, sufficiently compact to hold water. In many places this clay is exposed, furnishing the rice lands of this extensive district.

Leaving the sea coast and penetrating the country thirty or forty miles, the sand hills rise, the wells get deeper, and the people have another and higher grade of health. This region is, in Georgia, fifty miles or more in breadth, and is an exceedingly healthy country. It is unfortunately unproductive, and thinly inhabited, and will so remain, till skill in cultivating this interesting section shall develop its capacity to sustain a dense population.

Ascending the streams, we next meet with that remarkable region, called, in Georgia, the rotten limestone. From the sea-coast of New York, it extends, gradually winding and rising in elevation above the sea, till in Georgia it has become nearly two hundred feet above the tide, increasing in breadth and elevation as it progresses south and west. This whole region, extending to Mexico, is considered unhealthy. Many parts of it have high hills and deep wells, and are healthier than other places in the same region, but there is no warrant for the enjoyment of health and extension of life in such a region.

The composition and structure of this extensive, fertile and sickly region, is such, that the streams through it are very level, their vallies subject to overflow, and in many places lime sinks, developing large streams of water under ground, running to some larger neighboring stream. The surface of the country is sandy, and in some places, elevated into hills; but a substratum of clay or marl at various depths from the surface, detains the rain water which flows perpetually from the sides or bottoms of the hills. The water of these springs is offensive to the taste, and in some places, has the smell of stale animal matter. This putrid smell is probably derived from the beds of marine shells through which this clear water has passed. The whole arrangement and composition of the earth in this region favors dampness, and produces the sickliness so generally feared.
Proceeding up the rivers we next come to a range of elevated and well drained pine woods, free from marl, though abounding in porcelain clay. This clay, in greater or less purity, is seen in the banks of streams, the bottoms of ponds, or on the tops of hills. It seems to be a transition from the granitic to the rotten limestone region; and is as healthy as any part of the country. It extends from Augusta to Milledgeville, and onward as far as I have examined, and is from five to ten miles in width. This region is comparatively poor, but under all circumstances more free from bilious fever, than the country above or below it. Mill ponds, or natural ponds, in the elevated plains, are harmless, under any degree of damp or drought. This region is thinly inhabited, by a population who live, from generation to generation, without experiencing bilious or intermittent fevers.

We next come to the great primitive formation east of the Alleghanies. It is a granite region, though infinitely diversified in appearance. The country is rolling and well drained, and when cleared and brought into tillage by the planter, very healthy. This country, extending from the tops of the mountains to the last granite falls in the rivers, is the strength and the pride of the South. From Virginia to Georgia it covers about one half of the country east of the mountains, and is probably not excelled, in climate and situation, by any part of the earth. It has no limestone, but clay, and all the elements of granite combined in a thousand ways, ensure a fair amount of fertility. But these elements and their vegetable products, give rise under certain circumstances to bilious fever. Mill ponds, badly drained valleys, oozy and damp hill sides, and probably many ill drained but cultivated fields, prove fruitful sources of disease. In all this region there is great difference in the healthfulness of neighboring places; but it will generally hold good, that places well drained and sufficiently removed from ponds or similar nuisances, will be healthy.

But experience has shown that a residence near our great streams or wide overflowing bottoms, in our primitive region, is unhealthy. In this region mill ponds are fearful nuisances. These causes are worst where the country has been but lately brought into cultivation. They diminish as the country grows older. The overflowing of river lands, and their subsequent
drying in hot weather, has been regarded as the most certain cause of bilious fever. I have again and again witnessed fever which I thought arose from this cause. But the rocky bed of a rapid river, being laid bare by extraordinary drought, has been found as capable of producing fever as the muddiest swamp. It is not then in proportion to the quantity of mud. The slimy rocks of dried up rivers, have appeared to produce diseases as violent and as fatal, as any produced by swamps of any kind. As a general rule, it may be said, that places are unhealthy in proportion to their contiguity to extensive deposits from streams which become dry in the heat of summer.

2. **Elevation—Distance.** Admitting that the sloping banks and fertile bottoms of streams, and the margins of ponds, are in summer, productive of the cause of bilious fever, it becomes an important question, in choosing a residence, to know the safest locality. I have pointed out the circumstances productive of fever, and those free from the danger, and it is now my purpose to say something of the distance, and elevation, which may be relied on as a protection. Three miles has been assumed as the nearest safe distance from a spot producing malaria. My own experience places the line of safety far within this limit, but having seen the range of bilious fever near the same river, vary in different years in proportion to the severity of the disease of the season, I conclude that the danger is more extended, when the product of the cause is greater or more powerful. I have compared it with the emanations of putrid effluvia from decaying animal substances—they become weaker in proportion to distance. I have never seen bilious fever, as much as two miles from the place which I considered as originating its cause. And I believe there are few places which ever produce it at so great a distance as a mile and a half. It has been said that the cause of this disease, moves with the wind, and continues near the surface of the earth—that an upper story is safer than a lower story of the same house. This does not correspond with my observations. The room or building nearest the nuisance, will probably be first attacked; but I have never seen the residents of an upper story, less affected than those who resided or slept below. Nor can I confirm the opinion of some men of high standing, that this miasm cannot cross
a pond or river. The Oconee river, in the alluvial country below Milledgeville, runs in several places at the base of high bluffs, extending back to a great distance in a well drained and healthy country. These bluffs are considered a more dangerous residence, than the rich bottoms on the opposite side, where the only apparent cause of the miasm is to be found.

To what elevation the cause of fever may rise, is a question yet unsettled; and I have witnessed no facts directly bearing on this point. Between creeks or rivers, there must be a point of greatest elevation; and this point is apt to be at a medium distance between them. This elevation above the river, within a few miles of this place, is from one to four hundred feet. On each side of Fishing Creek, which empties into the Oconee immediately below Milledgeville, there arise hills of this height, overlooking its valley from each side. I have many times, in a tour of professional labor, made a circuit of twenty miles up on one side, and down on the other of this stream. It was at several points easy to behold the valley, from one to three miles from hill to hill, spread out like a map for several miles. On the top of the hills, on which there run public high ways, there was not, nor ever has originated, a bilious or intermittent fever. No wind from the valley, although so near, has ever spread the pestilence so far. It has been interesting to notice the exactness of the limit which seemed to be assigned the disease. I have several times noticed two settlements, one hundred yards apart—the most distant would escape, altogether, while that which was only one hundred yards nearer, suffered the disease in almost every member of the family.

It has been said, that villages are more subject to the visits of agues, than cities—I will add that a single residence in the country, is more subject than either. If the decomposition of vegetable matter, by warmth and moisture, especially in combination with a clay soil, is the cause, these facts will appear as matter of course. The suburbs only of a great city can be much exposed, and a village can have but little protection—every house is near the suburbs on one side or the other.

I have said that intervening water affords no protection against malaria; and I think that intervening houses are equally insufficient to arrest its progress. Intervening hills are en-
titled to more confidence. It has long been observed in the United States, that the summit of the nearest hill to a river valley, is the most sickly residence which can be chosen. Any part of the valley has been justly thought more healthy. In 1813-14, I attended a family located on one of these picturesque hill tops, elevated perhaps one hundred feet above, and distant about half a mile from the river. The family, with scarcely an exception, had every year a violent attack of bilious fever, and two or three died from it. I advised a removal over the hill; but the gentleman, whose possessions did not extend far, could only accomplish it by moving lower down where the hill was narrower. He in this way secured a hill between him and the river valley, but gained little in distance, and was on a place at least sixty feet lower than that he had left. His new residence proved entirely exempt from bilious fever, and is still inhabited and healthy.

Mist, or fog, has been thought to cause, or to serve as a means of transporting the cause of fever. I believe this idea is exploded amongst those whose opinions would entitle them to much respect. But the fog, which can be seen, gives the most perfect development of the places in a valley which will be most subject to this disease. When it rises from a river in a calm morning, it may be seen to spread equally over the valley, arising in an equal cloud to the tops of the hills. The slightest movement of the air will drive it all over the hill, but it will not pass over in its thickness, but like smoke, pass in a thin stream over the hill. Admitting that this fog fills the air containing the malaria, is it not obvious that the brow of the hill is the part most exposed to its influence? For at this point it all passes near the earth's surface, and in my opinion affords a good exemplification of the reason, the hill top is the most unhealthy location.

3. Heat and cold, wet and dry. Heat and moisture are essential ingredients in the cause of fever. It has been said that bilious or intermittent fever, will never occur unless the thermometer, in the shade, will show sixty-five degrees of heat, in the day time. My observations on this head, are not experimental. I feel authorized to say, that I have never seen the disease occur, unless the heat had previously been at least ten degrees above sixty-five; and that with the heat, and all other
causes favoring its production, a considerable time is necessary to produce it. In years which produce the most violent disease, I have observed the mildest cases earlier in the season. When every year produced a fatal epidemic fever in Milledgeville, the middle of June commonly presented numerous cases; since 1826, the date of their first appearance has gradually receded, till they are hardly seen before the month of August. The heat of our summers is always sufficient to produce the disease, when other causes concur.

Moisture seems to be the true point at which the process, whatever it is, goes on. Inundations and drenching rains suspend or destroy it. This I have witnessed, in so many instances, and under such various circumstances, that I think there can be scarcely a doubt of its truth. When in July, 1810, the month of June presented many cases of fever, drenching rains and a freshet in the river, suspended them for a month or more; but the dry season which followed, was attended with many fatal cases. It was remarkable that year that the disease, when it reappeared, seemed to come suddenly, and in its greatest violence. A family of some forty persons, black and white, resided near the river, five miles below Milledgeville. The Indian corn, at the freshet about the middle of June, was in bloom; and when the water subsided, fell down and decayed with great stench. A second planting was made, and during its tillage, and till it was in silk and tassel, the laborers and the family were in good health. In September, two or three of this family were attacked. On the morning of the third day, these cases appeared alarming, and a messenger was dispatched for medical aid. The messenger was struck down on the road, and a second was dispatched, who passed the first, but did not reach his journey’s end, till he also was compelled to descend from his horse, and rest under the friendly shade of a tree. A traveller passing the road, saw the two messengers, and brought the intelligence to me. I immediately went to this scene of distress. There were only three persons out of the whole of this family, able to render any aid to the sick. I considered myself fortunate, that from vigorous measures in removing the whole of these people to a healthy location; and procuring for them such aid as they absolutely required, I was able to say only two died of their diseases.
I have seen it stated that the extreme of drought, was as apt to produce this disease, as any thing else. This never occurs, except in the immediate neighborhood of ponds, or rivers, or other places, which are at other times covered or saturated with water. While the violent endemic, a few years past, was desolating the city of Augusta, an eccentric man was sowing turnips in the bed of the river, on land on which the sun had never before shone within the memory of man. The English army when in Spain, pitched their tents near some pools of water, in the bed of a river which was nearly dried up. They found in the malaria, a more dreadful enemy than the French. In every instance in which I have investigated this subject, I have found cause to believe, that a state of moisture, and not of wetness or dryness, was necessary to give rise to bilious fever. The effect is greatest, when all circumstances conspire to favor the most rapid putrefaction. But I am not prepared to say, that putrefaction is the cause. I have never seen the disease arise from the decay of animal matter, however offensive.

4. Decaying substances. Animal substances or animalised matters, such as are found in privies, stables, and yards, have never, within my observation, produced bilious fever. The scavenger may remove from cities, the cause of dysentery, cholera morbus, and possibly typhus fever; but he is comparatively useless, in removing the cause of bilious fever. Let the suspected place be dried or submerged in water, and what human art can do is accomplished.

It does not now occur to me that I have ever seen it stated, that the putrefaction of the flesh of animals has produced bilious fever, in any of its forms or varieties. I have stated that the decay of the litter of stables, or other similar matter is equally harmless. The testimony is different in regard to vegetable matters. Grains, fruits, vegetables, and roots, gathered for consumption, but suffered to decay, have in thousands of instances been thought to produce this fever. The danger is greatest when the decay is most rapid. I once met an alarming fever, on a place which I supposed from its location, would be exempt from the malady. On making search, I found near by, four or five bushels of potatoes in the last stage of putrefaction. In 1840, I was in the city of New York, in the month
of August. Passing near one of the slips on the East river, I observed in the transparent water, a large quantity of potatoes, not less than one hundred bushels. They had undoubtedly become too unsound for sale, and been thrown overboard, in such a situation as to be exposed to the air and the sun at low tide. When I saw them, they were covered in water, but the escape of gas from them, equalled the most active fermentation. Apprehending ill from this state of things, I continued to notice the newspapers, and soon after observed that a fever had broken out near the spot I have been describing. In the year 1819, I was in the city of Baltimore in the month of July. Passing near Fell's point, I observed a new wharf erected, which was being filled up with shavings and mud, raised by a machine from the bottom of the basin near the wharf. This compost was raised several feet above the tide. A fatal bilious, or as it was called in the newspapers, yellow fever, soon arose near this spot, and spread consternation through the city.

But it is comparatively seldom, that bilious fever can be traced to causes thus obvious. The decay of vegetables, grains, seeds, or fruits, gathered by men, seldom cause bilious fever. Trees also decay and fall in any number; and when other causes do not occur, no fever will arise. When large trees are cut around near the root, and die after having put forth their leaves, the sap sometimes descends, forming a kind of jelly, which decays with great stench. I have once remained during the summer months, very near hundreds of pines in this state. Not the slightest sickness occurred to myself, or any one of the numerous family, equally exposed.

5. Is putrefaction the cause of fever? I have said that fever does not arise as soon as putrefaction commences, but after a considerable time has elapsed. I have never been able to detect the cause of fever, by the presence of any unpleasant smell in the atmosphere. The gases, discharged by putrefaction, have long disappeared before fever occurs. Nothing could excel the calm, serene beauty of the heavens, and the refreshing cool and sweet atmosphere, which I have often breathed in Milledgeville, in the month of October, when the watch light in every house, and the anxious face of almost every one I met, announced the presence of an awful pestilence. The senses
gave no intimation of the presence of this fatal pest. A friend of mine who resided in Savannah in 1820, when fever was a pestilence there, has made to me the same remark. When the cool nights of autumn came on, the citizens who had remained during the season, began to suffer less, and the cause of disease seemed to be giving way; but woe to him, who from healthier places, ventured to expose himself to this deceitful scourge, at such a time. A single night in a place thus circumstanced, has been fatal to many. There is no safety, till the thermometer has been below the freezing point. Frost must have killed the vegetation and blackened the land. How long this undiscovered substance, the cause of fever, may remain in the place it has originated, under a state of the atmosphere too cool to produce it, cannot be told. It disappears suddenly before frost, and with equal suddenness, leaves a land overflown with water. But if the atmosphere becomes cool, but without frost, there is reason to believe that many weeks will elapse before there will be safety for the visitor of these infected places,

6. Water. I think there is no where, a civilized people, who drink so little, besides the water of their wells and springs, as the citizens of the Southern States. With our ancestors, the excitation of wine and distilled liquors, was a fashion; and while it heightened the zest of their social intercourse, it produced ills not to be contemplated without dismay. This fashion has now become a matter of history—it has passed away. It has given way to a climate unsuited to intemperance, and cannot be again revived. This I am sensible will be disbelieved by many who think that the reform in regard to temperance, has been brought about by moral causes. These it is true, are the noblest foundations of temperance, but our case would be bad, if these alone could save us from this degrading vice.

I love the Southern Atlantic States. I look upon them as the chosen seat, of the highest physical and mental developments of man. I therefore have seen, with unspeakable satisfaction, the steady progress of the cause of temperance, for the last thirty years. The people of this region are physically incapable of using ardent spirits, as a beverage. Nor are they
much more capable of using fermented liquors of any kind. If the fountains of their hills flowed with porter and wine, a few persons might become sots; but neither wine nor porter, would become the common beverage of the country. Intoxication is, with many of these people, a fearful temporary insanity. They can no more sink down in quiet stupefaction, from strong drink, like the Russian, than they can eat ten pounds of whale blubber at a meal, like the Greenlander. The Southern men who become occasionally intoxicated, commit more acts of outrage and violence, than a thousand times their number of sober men. The number who give way to this vice is small; but the crimes they commit are so fearful and frequent, that persons at a distance regard the country as a scene of anarchy and bloodshed. Rejoicing that these scenes are becoming less frequent, and having full confidence that persons born and raised in this climate, have irresistible tendencies towards temperance in drink, I return to the consideration of the effect of the water drank by these people, on their health.

Water which falls in rain on the earth, is in a tolerable state of purity; but by the time it finds its way into springs and wells, it becomes more or less mineralized. In the primitive region, which lies above the great falls of the river at Columbus, Milledgeville, and Augusta, the water is sufficiently pure for drink. That which is most disagreeable to the taste may still be drank with safety. But as we get into the rotten limestone, the scene changes. The first pine hills, resting on mica slate and other primitive rocks, yield water in the highest degree pure and salubrious. Immediately below, the water is to be regarded with distrust. That which is found in wells, being in fact, rain water, which has passed through an alluvium of clay and sand, is not unwholesome. But the springs from deeper veins, are less to be depended on. Many of these, arising in whitish clay, yield water of a whitish or milky appearance. In other cases the water is perfectly transparent, and as the limestone region sets in, the water becomes decidedly clear. The extensive region to which I now have reference, stretches across the country, from ten to fifty miles below Milledgeville. Many parts of it are free from bilious fever, and in some, the health of the inhabitants seems to be good. But I
can hardly be deceived, in the opinion, that they are far more subject to diseases of the liver, spleen and intestines, than those persons, who reside higher up the country. This difference, I attribute to the water they drink. This conclusion has not been hastily adopted. I have often visited this region, and have met the pale face, the tumid spleen, torpid liver, and disordered bowels, as far and wide as the springs and wells afforded the evidences of bad water I have referred to. Not so of bilious fever. This does not extend far beyond the valley or hills, combining the circumstances above described.

How to avoid Bilious Fever.—The cause of bilious fever, may in many instances, be avoided, and health and life preserved, by persons who live near it. This cause is met in the open air, on the road, in the field, or in the woods, and even in houses, located too near the place it is produced in. The means of avoiding it, will vary with the circumstances under which individuals are placed. Experience has shown, that those most exposed to the open air at night, are soonest and worst affected. To sleep in the open air when the malaria is present, is the worst sort of exposure. To visit infected places at night, is dangerous; but I have never known a case of fever, brought on by visiting an unhealthy place in the day time, and retiring before night. Great advantage would be derived from entering and closing the house, and remaining thus secluded till the next day. Striking examples of this, are related by authors; but I never found it practicable to induce people to conform to this rule. A single night spent in an infected atmosphere, will produce the disease, in as violent a form as a longer time. Persons in towns, or on plantations, should recollect, that the cause of this fever arises in the nearest marsh, or some such place. Every foot they can retire from it, is an advantage. The width of a street, I have often found, a matter of consequence. My residence, in Milledgeville, was chosen with the light of experience on this subject. My family, averaging more than a dozen persons, have for twenty years, entirely, escaped. Not even the mildest intermittent has happened amongst them. Every year of the time, has presented this disease, of some grade, within a
quarter of a mile. One year, it was formidable, in every house south of me; and in the nearest, within forty yards, several violent cases, one of which proved fatal, occurred. The first object, then, is to keep at a proper distance. A mile and a half, is probably sufficient. There are few spots in this country, in which a healthy residence, within this distance, may not be found. Very soon after the settlement of Milledgeville several families found safety in country residences, judiciously chosen, from two to four miles distant. These citizens maintained daily intercourse with the town, when it was most unhealthy; and returned to it in the winter, and there never occurred a single instance of fever, chargeable to these daily visits. Persons who travel in summer, should bear in mind, the danger of a single night's exposure to unwholesome air. The journey should be so arranged, that night may not overtake the traveller at unhealthy places. The mariner has within his reach the same means of escape. He may go on shore in the day time, in safety, and in equal security, traverse every sea and visit every clime; but woe to him, if the temptations of sea-port towns, or sickly shores, allure him to remain on land at night. Thousands have perished from this cause. This danger has been pointed out by medical men, and is now generally understood. A rigid rule of staying on board, and at night, and keeping at a safe distance from land, is the means of preserving the health and the lives of thousands every year.

ARTICLE XLVIII.

Statistics of the Mortality in Augusta, Georgia, from 1839 to 1848. Arranged by Henry Rossignol, M. D.

The materials for the following tables have been derived from the Books of the City Sexton, which it is to be regretted have not always been kept in such a manner as to be of much practical utility. Similar statistics for former years having been published in this Journal, (see vols. 1 and 3 of old series,) it may be interesting to have them continued from time to time, if for no other end than to exhibit the relative salubrity
of the city at different times. The writer feels that this object will be attained inasmuch as the records are correct so far as relates to numbers, however defective they may be in reference to ages and to the immediate causes of death.

The census is that taken by order of the State, and, although not as detailed as would be desirable, is the best that could be procured.

Table No. 1.

Census of Augusta, taken by order of the State. May, 1845.

<table>
<thead>
<tr>
<th></th>
<th>Whites</th>
<th>Free colored</th>
<th>Slaves</th>
<th>Deaf</th>
<th>Dumb</th>
<th>Lunatic</th>
<th>White males, between 6 and 16</th>
<th>Female whites, between 6 and 15</th>
</tr>
</thead>
<tbody>
<tr>
<td>1848</td>
<td>3948</td>
<td>440</td>
<td>3114</td>
<td>2</td>
<td>1</td>
<td>7</td>
<td>436</td>
<td>439</td>
</tr>
</tbody>
</table>

Table No. 2.

Deaths in each year, from 1839 to 1848.

<table>
<thead>
<tr>
<th>Year</th>
<th>Whites</th>
<th>Blacks</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>1839</td>
<td>320</td>
<td>unknown</td>
<td>207</td>
</tr>
<tr>
<td>1840</td>
<td>98</td>
<td>109</td>
<td>207</td>
</tr>
<tr>
<td>1841</td>
<td>63</td>
<td>95</td>
<td>158</td>
</tr>
<tr>
<td>1842</td>
<td>72</td>
<td>81</td>
<td>153</td>
</tr>
<tr>
<td>1843</td>
<td>81</td>
<td>120</td>
<td>201</td>
</tr>
<tr>
<td>1844</td>
<td>97</td>
<td>85</td>
<td>182</td>
</tr>
<tr>
<td>1845</td>
<td>68</td>
<td>87</td>
<td>155</td>
</tr>
<tr>
<td>1846</td>
<td>71</td>
<td>91</td>
<td>162</td>
</tr>
<tr>
<td>1847</td>
<td>59</td>
<td>87</td>
<td>146</td>
</tr>
</tbody>
</table>

Table No. 2.—In preparing this table, the still-born are included, although not in accordance with usage. It is unfortunate that the number of blacks who died in 1839 cannot be ascertained, owing to the confusion occasioned by the epidemic which ravaged the city during that year. It is notorious, however, that the black population suffered comparatively little mortality from the yellow fever of that year, and that its fatality among the colored was in a direct ratio with the proportion of caucasian blood in their veins.
Table No. 3.

Deaths in each month during nine years—1839 to 1848—still-borns included.

<table>
<thead>
<tr>
<th>Year</th>
<th>Month</th>
<th>Whites</th>
<th>Blacks</th>
<th>M. total</th>
<th>A. total</th>
<th>Year</th>
<th>Month</th>
<th>Whites</th>
<th>Blacks</th>
<th>M. total</th>
<th>A. total</th>
</tr>
</thead>
<tbody>
<tr>
<td>1836</td>
<td>Jan.</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td>1842</td>
<td>Jan.</td>
<td>7</td>
<td>9</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Feb.</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Feb.</td>
<td>2</td>
<td>4</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>March</td>
<td>13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>March</td>
<td>3</td>
<td>5</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>April</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>April</td>
<td>9</td>
<td>6</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td></td>
<td>May</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>May</td>
<td>3</td>
<td>5</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>June</td>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>June</td>
<td>7</td>
<td>6</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td></td>
<td>July</td>
<td>13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>July</td>
<td>8</td>
<td>6</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Aug.</td>
<td>37</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Aug.</td>
<td>9</td>
<td>7</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sept.</td>
<td>137</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Sept.</td>
<td>7</td>
<td>8</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Oct.</td>
<td>49</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Oct.</td>
<td>7</td>
<td>11</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Nov.</td>
<td>18</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Nov.</td>
<td>6</td>
<td>7</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dec.</td>
<td>6</td>
<td>320</td>
<td></td>
<td>153</td>
<td></td>
<td>Dec.</td>
<td>4</td>
<td>7</td>
<td>11</td>
<td>153</td>
</tr>
<tr>
<td>1840</td>
<td>Jan.</td>
<td>8</td>
<td>12</td>
<td>20</td>
<td></td>
<td>1843</td>
<td>Jan.</td>
<td>11</td>
<td>5</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Feb.</td>
<td>15</td>
<td>7</td>
<td>22</td>
<td></td>
<td></td>
<td>Feb.</td>
<td>3</td>
<td>4</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>March</td>
<td>8</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td>March</td>
<td>4</td>
<td>8</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td></td>
<td>April</td>
<td>9</td>
<td>8</td>
<td>17</td>
<td></td>
<td></td>
<td>April</td>
<td>8</td>
<td>6</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td></td>
<td>May</td>
<td>7</td>
<td>10</td>
<td>17</td>
<td></td>
<td></td>
<td>May</td>
<td>2</td>
<td>11</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td></td>
<td>June</td>
<td>5</td>
<td>5</td>
<td>10</td>
<td></td>
<td></td>
<td>June</td>
<td>7</td>
<td>6</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td></td>
<td>July</td>
<td>8</td>
<td>6</td>
<td>14</td>
<td></td>
<td></td>
<td>July</td>
<td>14</td>
<td>12</td>
<td>26</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Aug.</td>
<td>10</td>
<td>11</td>
<td>21</td>
<td></td>
<td></td>
<td>Aug.</td>
<td>8</td>
<td>15</td>
<td>23</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sept.</td>
<td>10</td>
<td>9</td>
<td>19</td>
<td></td>
<td></td>
<td>Sept.</td>
<td>6</td>
<td>19</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Oct.</td>
<td>10</td>
<td>17</td>
<td>27</td>
<td></td>
<td></td>
<td>Oct.</td>
<td>7</td>
<td>12</td>
<td>19</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Nov.</td>
<td>9</td>
<td>7</td>
<td>16</td>
<td></td>
<td></td>
<td>Nov.</td>
<td>5</td>
<td>11</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dec.</td>
<td>7</td>
<td>9</td>
<td>16</td>
<td>207</td>
<td></td>
<td>Dec.</td>
<td>6</td>
<td>11</td>
<td>17</td>
<td>201</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1844</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1847</td>
</tr>
<tr>
<td></td>
<td>Jan.</td>
<td>4</td>
<td>6</td>
<td>10</td>
<td></td>
<td>1841</td>
<td>Jan.</td>
<td>8</td>
<td>11</td>
<td>19</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Feb.</td>
<td>5</td>
<td>10</td>
<td>15</td>
<td></td>
<td></td>
<td>Feb.</td>
<td>4</td>
<td>8</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td></td>
<td>March</td>
<td>4</td>
<td>9</td>
<td>13</td>
<td></td>
<td></td>
<td>March</td>
<td>9</td>
<td>6</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td></td>
<td>April</td>
<td>5</td>
<td>5</td>
<td>10</td>
<td></td>
<td></td>
<td>April</td>
<td>17</td>
<td>8</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td></td>
<td>May</td>
<td>6</td>
<td>10</td>
<td>16</td>
<td></td>
<td></td>
<td>May</td>
<td>11</td>
<td>7</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td></td>
<td>June</td>
<td>8</td>
<td>3</td>
<td>11</td>
<td></td>
<td></td>
<td>June</td>
<td>12</td>
<td>6</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td></td>
<td>July</td>
<td>9</td>
<td>7</td>
<td>16</td>
<td></td>
<td></td>
<td>July</td>
<td>11</td>
<td>6</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Aug.</td>
<td>4</td>
<td>7</td>
<td>11</td>
<td></td>
<td></td>
<td>Aug.</td>
<td>3</td>
<td>7</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sept.</td>
<td>6</td>
<td>5</td>
<td>11</td>
<td></td>
<td></td>
<td>Sept.</td>
<td>6</td>
<td>11</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Oct.</td>
<td>4</td>
<td>17</td>
<td>21</td>
<td></td>
<td></td>
<td>Oct.</td>
<td>8</td>
<td>8</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Nov.</td>
<td>5</td>
<td>7</td>
<td>12</td>
<td></td>
<td></td>
<td>Nov.</td>
<td>5</td>
<td>3</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dec.</td>
<td>3</td>
<td>9</td>
<td>12</td>
<td>158</td>
<td></td>
<td>Dec.</td>
<td>3</td>
<td>4</td>
<td>7</td>
<td>182</td>
</tr>
</tbody>
</table>

Table No. 4.

Number of deaths in each month, during a period of eight years, (from 1840 to 1848,) with averages deduced from the column of Whites, from that of Blacks, and from the total.

<table>
<thead>
<tr>
<th></th>
<th>Whites</th>
<th>Blacks</th>
<th>Total</th>
<th>White average</th>
<th>Black average</th>
<th>Total average</th>
</tr>
</thead>
<tbody>
<tr>
<td>January</td>
<td>47</td>
<td>63</td>
<td>110</td>
<td>5.87</td>
<td>7.87</td>
<td>13.75</td>
</tr>
<tr>
<td>February</td>
<td>38</td>
<td>54</td>
<td>92</td>
<td>4.75</td>
<td>6.75</td>
<td>11.50</td>
</tr>
<tr>
<td>March</td>
<td>38</td>
<td>57</td>
<td>95</td>
<td>4.75</td>
<td>7.12</td>
<td>11.87</td>
</tr>
<tr>
<td>April</td>
<td>61</td>
<td>48</td>
<td>109</td>
<td>7.62</td>
<td>6.00</td>
<td>13.62</td>
</tr>
</tbody>
</table>
Rossignol's Statistics of Mortality.

May,	43	59	102	5.37	7.37	12.75
June,	54	46	100	6.75	5.75	12.50
July,	69	60	129	8.62	7.50	16.12
August,	57	72	129	7.12	9.00	16.12
September,	59	84	143	7.37	10.50	17.87
October,	66	94	160	8.25	11.75	20.00
November,	45	58	103	5.62	7.25	12.87
December,	32	60	92	4.00	7.50	11.50

Table No. 5.

Average number of Deaths per annum, among the Whites and Blacks, at different ages. (1846 and 1847.)

<table>
<thead>
<tr>
<th>WHITES.</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Under 5 years,</td>
<td>25.00</td>
<td>Under 5 years,</td>
</tr>
<tr>
<td>From 5 to 10 years,</td>
<td>3.50</td>
<td>From 5 to 10 years,</td>
</tr>
<tr>
<td>" 10 to 20 "</td>
<td>4.50</td>
<td>" 10 to 20 "</td>
</tr>
<tr>
<td>" 20 to 30 "</td>
<td>7.50</td>
<td>" 20 to 30 "</td>
</tr>
<tr>
<td>" 30 to 40 "</td>
<td>9.00</td>
<td>" 30 to 40 "</td>
</tr>
<tr>
<td>" 40 to 50 "</td>
<td>5.00</td>
<td>" 40 to 50 "</td>
</tr>
<tr>
<td>" 50 to 60 "</td>
<td>5.00</td>
<td>" 50 to 60 "</td>
</tr>
<tr>
<td>" 60 to 70 "</td>
<td>2.50</td>
<td>" 60 to 70 "</td>
</tr>
<tr>
<td>" 70 to 80 "</td>
<td>2.50</td>
<td>" 70 to 80 "</td>
</tr>
<tr>
<td>Over 80 years,</td>
<td>0.50</td>
<td>Over 80 years,</td>
</tr>
</tbody>
</table>

Table No. 5.—The sexton's records did not contain, with sufficient accuracy, the ages of those who died previous to 1846, to allow correct tables to be made out for that period. We are therefore constrained to furnish tables for only two years. The apparent longevity of the blacks is evidently the result of ignorance of their real age, and of their well-known propensity to exaggerate it.

Table No. 6.

Ages of those who died in 1846 and 1847.

<table>
<thead>
<tr>
<th>WHITES.</th>
<th>Under 9 years.</th>
<th>From 9 to 10</th>
<th>10 to 20</th>
<th>20 to 30</th>
<th>40 to 50</th>
<th>50 to 60</th>
<th>60 to 70</th>
<th>70 to 80</th>
<th>Over 80</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>1846</td>
<td>23</td>
<td>5</td>
<td>3</td>
<td>11</td>
<td>9</td>
<td>7</td>
<td>5</td>
<td>4</td>
<td>4</td>
<td>71</td>
</tr>
<tr>
<td>1847</td>
<td>27</td>
<td>2</td>
<td>6</td>
<td>4</td>
<td>9</td>
<td>3</td>
<td>5</td>
<td>1</td>
<td>1</td>
<td>59</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>7</td>
<td>9</td>
<td>15</td>
<td>18</td>
<td>10</td>
<td>10</td>
<td>5</td>
<td>5</td>
<td>130</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>BLACKS.</th>
<th>Under 9 years.</th>
<th>From 9 to 10</th>
<th>10 to 20</th>
<th>20 to 30</th>
<th>40 to 50</th>
<th>50 to 60</th>
<th>60 to 70</th>
<th>70 to 80</th>
<th>Over 80</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>1846</td>
<td>40</td>
<td>2</td>
<td>3</td>
<td>7</td>
<td>6</td>
<td>5</td>
<td>2</td>
<td>9</td>
<td>8</td>
<td>91</td>
</tr>
<tr>
<td>1847</td>
<td>32</td>
<td>4</td>
<td>8</td>
<td>9</td>
<td>5</td>
<td>5</td>
<td>7</td>
<td>9</td>
<td>3</td>
<td>86</td>
</tr>
<tr>
<td></td>
<td>72</td>
<td>6</td>
<td>11</td>
<td>16</td>
<td>11</td>
<td>10</td>
<td>7</td>
<td>16</td>
<td>17</td>
<td>178</td>
</tr>
</tbody>
</table>
Table No. 7.—It will be observed that the diseases of the
blacks are stated only for two years. This is all that could be gleaned from the sexton's book. The names of the diseases are such as have been recorded. It was deemed better to furnish them in this manner than to undertake any regular classification or change of nomenclature. Indeed very little reliance can be placed upon this table, inasmuch as for several years the sexton rarely derived his information from those who were alone qualified to make it correct.

Table No. 8.

Relative Proportion of the Sexes of those who Died.

<table>
<thead>
<tr>
<th>Year</th>
<th>Males</th>
<th>Females</th>
<th>Sex unknown</th>
</tr>
</thead>
<tbody>
<tr>
<td>1840</td>
<td>64</td>
<td>29</td>
<td>5</td>
</tr>
<tr>
<td>1841</td>
<td>37</td>
<td>24</td>
<td>2</td>
</tr>
<tr>
<td>1842</td>
<td>40</td>
<td>31</td>
<td>1</td>
</tr>
<tr>
<td>1843</td>
<td>45</td>
<td>34</td>
<td>2</td>
</tr>
<tr>
<td>1844</td>
<td>51</td>
<td>45</td>
<td>1</td>
</tr>
<tr>
<td>1845</td>
<td>41</td>
<td>27</td>
<td></td>
</tr>
<tr>
<td>1846</td>
<td>43</td>
<td>28</td>
<td></td>
</tr>
<tr>
<td>1847</td>
<td>32</td>
<td>27</td>
<td></td>
</tr>
</tbody>
</table>

In 1846, (Blacks) 48, 43,
In 1847, 49, 38.

ARTICLE XLIX.

Successful Amputation at the Shoulder-joint, for Gun-shot Wound—patient under Chloroform. By Paul F. Eve, M.D., Prof. of Surgery in the Medical College of Georgia.

On the 11th of February, 1848, I removed the arm at the shoulder-joint of a black boy, who had about 48 hours previously been accidentally shot. The discharge from the gun was received at a distance of only a few feet; it was loaded with squirrel shot, and tow was used for the wadding. This occurred in a neighboring county, and the patient was sent to Augusta by the rail-road. Dr. Beggs, who saw him soon after the gun-shot wound was made, removed the tow, with some of the shot, and restrained the hemorrhage, represented to have been considerable. The wound presented an irregular ovoidal opening, of an inch to an inch and a half in diameter, upon the
upper outer surface of the left arm, about an inch below the acromion process of the scapula, and the shot, after cutting the os humeri nearly in two, passed in the direction of the shoulder-joint and subclavian artery. His pulse when I first saw him, was over 100; his fingers of the injured side he said were benumbed, and he complained of pain in the region of the wound. The arteries of the left upper extremity pulsed distinctly; the age of the patient was 11; his general health good. His bowels had been moved with salts, and 50 drops of laudanum had also been given to procure ease and sleep.

Amputation at the shoulder-joint having been decided upon in consultation, assisted by Dr. Dugas, who by pressure upon the subclavian artery effectually controlled the circulation, and Dr. Means, who administered the chloroform, in the presence of the class in attendance at our college, the heel of the amputating knife was applied upon the anterior edge of the acromion, and by a continuous sweep around the head of the os humeri, two flaps, one anteriorly and the other posteriorly, were made, and the operation completed by ligating four or five arteries. In carrying the elbow forward, to throw the head of the bone backwards so that the knife might the more easily pass through the joint, the humerus was fractured, so near was its complete division by the shot, which must have entered en masse. The time consumed in the amputation, was thus increased by this fracture, but the longest estimate of those present was 22 seconds.

The insensibility produced by the chloroform was extremely satisfactory; the operation having been performed and the dressing applied without the knowledge of the patient. He was sitting up on the fourth, and left the surgical infirmary on the seventh day.

With the exception of some delay from the shortness of the flaps, owing to the destruction of the deltoid muscle by the wound, the discharge of a few shot from it, and some fever created or rather aggravated by worms, he had a good recovery, and is now a hearty, well boy.
PART II.—REVIEWS AND EXTRACTS.

Medical Ethics.

[We present the following extracts to our readers, taken from the British and Foreign Medico-Chirurgical Review—being a notice in that Journal on the subject of Medical Ethics. For high tone morality, the exponent of the true dignity and duty of the medical profession, for enlarged benevolence, we have found nothing equal to them.—Edt.]

The long interval of almost uninterrupted peace and tranquillity which Europe has enjoyed, and which is now disturbed not so much by international quarrels as by intestine commotion, has left the minds of men at liberty from the engrossing thoughts and efforts which war demands; and the result has shown itself,—and we trust in spite of a temporary check, will continue to show itself,—in the advance of all the arts and sciences. The sciences of morals and of mental philosophy have received their share of consideration; and consequently we find metaphysical theology, religious doctrines, formulæ and ceremonies, and ecclesiastical government and discipline, occupying the thoughts of a large and influential portion of the community. The medical profession is not exempt from the general movement; and, while we have to note with pleasure amounting to delight the wondrous progress that the medical sciences have made during the last thirty years, we cannot shut our eyes to the fact that the moral or ethical relations of the profession have not been neglected. Of recent years each European language has afforded at least one contribution to medical deontology and medical ethics; and if in our own country, the formal theory has attracted little attention, the practice of the great body of the profession has been in full accordance with its soundest teachings. No class of men—not even the clerical order—has exerted itself more disinterestedly and benevolently for the welfare of mankind; at home and abroad, we find the severest toil, the most dangerous duties, undergone with a cheerfulness and alacrity which can only result from a deep inherent sense of the claims of suffering humanity upon medical skill; and besides those whose official duties carry them to the remotest parts of that empire on which the sun never sets, numerous individual members of our body have been enlisted into the service of Christian missions, and Asia, from the coasts of Syria to the rivers of China, has felt the presence of practitioners, who carry succour for the souls of men in their right hand, and in their left help for their ailing bodies.
The little tract entitled 'Claims of the Missionary Enterprise on the Medical Profession,' by Dr. Macgowan, an American medical missionary at Ningpo, contains facts and arguments of interest to every practitioner who looks beyond this earth, and the pains and sorrows he has to alleviate; nay, of deep and surpassing interest, because if truly Christian, he must see that the medical missionary is therein more closely assimilated to the founder of his holy religion than any other. "Of the physician it is the high and honorable boast that with him science is merely the necessary means to an important end—that all his knowledge is eminently practical, and its great purpose benevolent. It is his province to assuage human suffering in all its varieties and aggravations, and in imitation of the Saviour, 'to heal all manner of diseases.'" When, however, he passes the boundaries of European civilization (and we, of course, include the civilized states of the New World within them), his labours become far more valuable and far more effective. In highly civilized nations medical science has interpenetrated the social condition of the people; and much of the prophylactic and practical knowledge of the profession is in daily application without the assistance of individual practitioners. The abounding numbers, too, of skillful hands and well-stored heads, lead to a lower estimate of the value of a skilled practitioner. He is no longer considered as "more than armies to the country's weal." But if we turn our eyes to half-civilized nations or to barbarous tribes, and mark the treatment of the sick and the ravages of disease amongst them, the glory of the medical profession—its power to save from misery and death—stands forth in brilliant clearness. "Behold Dr. Grant," says Dr. Macgowan, "armed only with his needle for the removal of cataract, forcing mountain passes, and, amidst ferocious warriors, winning his way to their homes and their hearts. On account of his professional skill he was enabled to traverse in safety regions heretofore untrodden by civilized man, and in whose defiles an army would perish in effecting an entrance." The destruction from epidemical diseases is frightfully appalling, especially from smallpox; and the sad traces of syphilis apparent amongst distant tribes, since they have become familiarized with Europeans, show that medical aid to the sufferers is called for alike as an act of moral duty and of Christian love. The treatment of the sick in many countries is truly cruel, either from ignorance, superstition, or apathy. Brahmin priest chokes the sick Hindoo with mud from the Ganges, and the weak, the aged, and the dying are left exposed on its banks to the glare of a burning sun, or are held up in the river and its sacred water poured down their throats until they expire.
Immense numbers of blind, we are told by Dr. Maegowan, are seen in the streets of Chinese cities, and their blindness is frequently the result of a simple ophthalmia, easily cured by suitable remedies. Dr. Bradley, who is stationed at Bangkok, in Siam, states that the relatives and friends of many who were literally all corruption, "helpless and hopeless," brought them to his door and then forsook them. His abode was almost constantly the scene of the groaning, the dying, and the dead.

Medical missionaries have not gone forth from Europe and the United States as missionaries of medical art and science exclusively, or even principally, but rather with the intent of rendering medical science and art subservient to the propagation of Christianity. Dr. Maegowan enumerates five American missionary Societies, five British, and one French, as sending out thirty-five medical missionaries; and this list we happen to know is imperfect, as both the Church of England and the Wesleyan body have professional men thus engaged. They are to be found in Africa, India, China, Syria, and the Islands of the Pacific. The object of the persons by whom Dr. Maegowan's address has been reprinted and circulated—the Edinburgh Medical Missionary Society—is to stir up the members of the medical profession in Great Britain to consider their own duties and responsibilities in connexion with the great object of Christian missions to the Heathen; and, in fact, to raise up a new order of missionaries, who shall combine, as of old, in their own persons the sacred functions of teaching religious truth and curing bodily infirmities. The Scotch editor of Dr. Maegowan's address, in a note attached thereto, does not hesitate to call upon "practitioners of some experience," and "not very young men," to go forth and give their personal services; and adduces circumstances and considerations fitted and intended to warn us, that some or even many amongst us may one day be constrained personally, to consider and answer the question, "Am I fitted, and if fitted, am I willing and ready to obey the call of my Divine Master to become a fellow-helper to the truth, in devoting my professional skill and personal exertions to the promotion of the spread of the Gospel?"

* * * * * * The physician's proper study is man in every possible relation. He has to study man as a spiritual being, and as a mere animal; as a moral creature, and as a piece of vital machinery; as in the "image of God," and as an unreasoning brute. In considering him as a spiritual and moral being, the physician, in common with the philosopher, trenched upon theology and moral philosophy, and is bound to study all questions thence arising in connexion with the structure, functions, and disorders of the brain and nervous
system. It cannot be matter of surprise that with such a wide scope of inquiry, and a scope which it is imperative that the physician should occupy, the physician has come to conclusions not always in accordance with the principles of dogmatic theology, or of the popular code of morals; that he has been lenient in his judgments, slow to punish, ready to plead human infirmity in excuse for crime, thrown the shield of professional opinion over the thief and murderer; looked not for uniformity of faith and practice, pleaded for toleration, has been latitudinarian in his principles, and, in short, has been pronounced a simpleton, a fool, a protector of felons, a heretic, a materialist, an irreligious person, an atheist. An irreproachable life, and gratitude for services rendered in the hour of need, may have often shielded the practitioner from persecution by the religious zealot, but oftener his discretion and caution have stood him in better stead. Feeling the impossibility of convincing, he has kept a watchful silence, or given a verbal assent to dogmas and doctrines which he could not comprehend, or which he suspected to be groundless.

* * * * * * * * * *

From the earliest periods of Christianity a second advent of Christ has been expected, and therewith a more perfect condition of morals. For such a great and glorious event, the daily and hourly prayers of Christendom are offered up in the words taught by Christ himself—"Thy kingdom come, Thy will be done on earth as it is in Heaven." How such events will be brought about, we are not taught; but if we seek for information in experience, and judge the future by the past, they will arise with fundamental changes in existing forms and ceremonies, and with a clearer and more perfect manifestation of God's infinite wisdom and goodness. Science, and especially the science of human nature, may be expected to have a large share in the agencies that will effect this. * * * * If an undevout astronomer be mad, how much more mad the educated and instructed but undevout practitioner, to whom God's handiwork is revealed, and the operations of infinite wisdom laid open in the living creation, and especially in man, the image of God?

* * * * * * * * *

"Whatever man may do, so long as he does it for himself, as a finite being, by himself, and through his own counsel—it is vain and will sink to nothing. Only when a foreign power takes possession of him, and urges him forward, and lives with him, in room of his own energy, does true and real existence first take up its abode in his life. This foreign power is ever the power of God. To look up to it for counsel—implicitly to follow its guidance,—is the only true wisdom
in every employment of human life, and therefore most of all in the highest occupation of which man can partake—the vocation of the true Scholar." (p. 192.)

Shall we be presumptuous if we recommend these views to our professional brethren? or if we say to the enlightened, the thoughtful, the serious, this—if you be true scholars—is your vocation? We know not a higher morality than this, or more noble principles than these: they are full of Truth.

In his third Lecture, Fichte treats of the progressive scholar, and in particular of genius and industry. He points out the nature and bearing of the two qualities, and the characteristics of those in whom they are deficient. Whenever a man, after having availed himself of existing means of mental improvement, remains inactive, satisfied with his acquirements, and proud of his powers, then he has neither the "Idea" nor "Genius," but only a vain ostentatious disposition, which assumes a singular and fantastic costume in order to attract attention. Fichte thus compares this man of Dutch metal with one of sterling ingot.

"Such a disposition shows itself at once, in self-gratulatory contemplation of its own parts and endowments, dwelling on these in complacent indolence, commonly accompanied by contemptuous disparagement of the personal qualities and gifts of others; while, on the contrary, he, who is restlessly urged on by the Idea, has no time to think of his own person;—lost with all his powers in the object he has in view, he never weighs his own capacities of grasping it against those of others. Genius, where it is present, sees its object only,—never sees itself; as the sound eye fixes itself upon something beyond it, but never looks round upon its own brightness. In such a one (one who contemplates his own brightness) the Idea does certainly not abide. What is it then, that animates him—that moves him to those eager and active exertions which we behold? Is it intense pride and self-conceit, and the desperate purpose, in spite of Nature, to assume a character which does not belong to him?—these animate, impel, and spur him on, and stand to him in the room of genius." (p. 150.)

Such is Fichte's description of that man in whom study and science have worked but imperfectly; pararallels we fear are to be found too numerously amongst the members of the medical profession, although most assuredly not exclusively there.

"Whatever thou doest, do it with integrity; if thou studyest, let it guide thy studies; and then, as to whether thou shalt prosper in what thou doest, leave that to God; thou hast most surely left it to him when thou goest to work with true and honest purpose;—with the attainment of that integrity thou wilt also attain unbroken peace, inward cheerfulness, and an unstained conscience; and in so far thou wilt assuredly prosper." (p. 156.)
But, while the practitioner is tolerant even to latitudinarianism, and allows to every man that freedom of opinion that he claims for himself as the sacred gift of God, and as the emanation of the godlikeness of human nature, he pitied these aberrations in religious principles and practices which throw ridicule on sacred things, and give an air of folly or knavery, or both, to religious professors. To him there is no essential difference between the aceticism of the fanatical Hindoo and the self-inflicted penances of the fanatical Christian. The sainted hermit, dwelling on the top of a pillar, differs in nothing from the sainted faqir, swinging from a pole, with a hook in his back. The tinsel tawdry of imagery is to him equally removed from the true spiritualism of human nature, whether visible in the islands and shores of the South or North Pacific, or in the peninsula of Italy or India. In the vagabond life of the faqir or friar, he sees only a modification of that appetite for restless movement and objectless action, which impels the professional mendicant to endure cold and hunger and the restraint of the lock-up, rather than the toils of honest industry. The delirious ecstasies of pious women he often knows to be none other than anomalous forms of hysteria, founded partly on fraud, partly on vanity, partly on insanity. The convulsive seizures and cries of multitudes in popular assemblies, induced in excitable persons by impassioned apostrophes or terrible denunciations, are not to his experienced eyes the solemn manifestations of the Holy Spirit of God, such as he loves to recognise in the pages of inspiration, but only the unmeaning and neurotic phenomena of an excited brain and nervous system. He hesitates to accuse the sufferers of hypocrisy or blasphemy; he denies that they are inspired by God. He pities their weakness; he maintains the truth.

It may be asked, to what extent should the medical practitioner interfere to propagate the religion he professes. We already find Christian medical missionaries abroad in the earth, and we are led to think that more will be influenced to go. Upon this point we think the free-will and conscience of the individual must decide. What we concede to the Christian, we cannot deny justly to the Hindoo. The liberty that we demand for the Protestant cannot be refused to the Jesuit. The only condition we have to demand is, that the mission be done honorably. But if the medical practitioner seeks, through the weakness and folly of his patients, to insinuate his creed and propagate his religious tenets, he is criminal: such conduct is only tolerable in the bigoted and crafty ecclesiastic, if in him. Many good and well-meaning people would have the practitioner to hold up the terrors of death before the eyes of his
confiding patient, and extort from his fears and enfeebled mind, what his sound and perfect judgment refused to concede. They would have the physician to preach a sermon at the bedside, and the apothecary to pray. It is reasonable and a duty to warn a patient of his approaching end, or of his danger, and to hint that an attention to the duties of religion is incumbent upon him, and a good thing. This may be so done that the chance of recovery, slight although it may be, shall not be entirely destroyed, and that the life which the practitioner has intrusted to him to save be not extinguished. Where the practitioner is in attendance on a co-religionist, a closer bond exists, and he may with propriety engage with his patient in those spiritual exercises, to which, during health, they have been both alike accustomed; but still he must remember that the care of the body is his chief concern,—the care of the soul is the duty of another; with him he may co-operate, but his place should not be usurped. Frequently the sectarian practitioner is the least learned and skilful; for the time that he devotes to his religious exercises and public services is necessarily taken from that which ought to be devoted to his studies. A high spirituality is by no means inconsistent with professional eminence; but a minute and slavish adherence to forms, or a usurpation of clerical duties, always is. It is, we think, certain that the path of duty lies to the professional man, in the exercise of his profession with Godlikeness, and with integrity and love. He is the revealed hand of Providence to suffering man; the earthly means whereby God softens the weight of the primal curse. To do this with singleness of purpose, should be his first and greatest duty; for it comprises love towards both God and man, and is the vocation to which God has called him.

The punishment and reformation of criminals will ultimately come within the pale of medical science. Many a wretched man has been hung and quartered, burnt at the stake, broken on the wheel, or racked with merciless cruelty, simply because he had had chronic cerebral inflammation; and many a poor, uneducated creature, abandoned by society to his own way, trained up, from no fault of his own, but from the neglect of his fellow-men, in the practice of every vice, is forced, when comparatively innocent, to consort with hardened mockers at every thing good and virtuous; and then, when the necessary results have followed, and he has injured society, society turns upon him in the sacred name of justice, and with its dread formalities, inflicts, not punishment, but revenge; seeks not to amend and reclaim, but to injure and annoy. Yet sound philosophy and genuine Christianity must and ought to, and we believe will, plead against such blind vengeance and unmeaning, useless
cruelty; and will appeal to medical science for the means and
the mode whereby mercy and justice may be linked together.
If a criminal cannot be reclaimed, he may be restrained. At
present, the antagonism between the ermine on the bench and
the rags at the bar, is too unnatural to be right; the dignity
of human nature is outraged not more in the culprit than in the
judge.

The relief of the sick poor is a duty which has ever been
diligently performed by the conscientious practitioner; and, so
long as society leaves the poor partially or wholly uncared for
in this respect, that duty ought still to be performed. But it
should be performed to fulfil a duty, rather than to display an
active benevolence; from an active principle of humanity, ra-
ther than to gain applause. Indiscriminately gratuitous relief
of the sick poor is like indiscriminate almsgiving; sickness, like
hunger, is not accidental, but the common lot of man; and they
differ only in this, that the one occurs regularly and at short
and certain intervals,—the other is of uncertain recurrence.
It is a necessity for which the individual, or society for him, is
bound to provide, and not a class of educated men. Relief of
poverty from the public purse, as a social right, is one of the
characteristics of modern civilization; and this principle should
be further extended, to include relief of sickness. Kindness,
tendermess, and gentleness should, however, ever accompany
the administration of this public relief. The poor man, bowed
down by disease, has a large claim upon the sympathy of the
practitioner; and perhaps the greater, now that a number of
sects prevail. Formerly, when the priest of the parish was the
special guardian of the poor, the poor man had in him an influ-
ential advocate, and one intimately acquainted with his neces-
sities. Now it is the union surgeon or dispensary physician
who is brought exclusively into this intimate relationship, and
it is he who has to fight the battle of poverty against the proud
man's contumely and the greedy man's avarice.

Although the relief of the sick poor is seldom withheld, it is
to be lamented that the officers of public charities often dimin-
ish the value of their services by a want of punctuality in their
attendance. Few consider how wearisome it is to the sick
man to wait; how valuable is the poor man's time, how much
loss and suffering is inflicted, when the medical officer either
comes late to his duties, or neglects them altogether.

There can be no doubt but that medical science is to be a
mighty moral agent for centuries to come, and that its applica-
tion to social and political economy promises the most brilliant
results. The arrest and extinction of epidemics is one of these; another is the highest salubrity attainable by architectural arrangements and domestic sewerage. These and the like must await the evolution and development of medical science itself; but the minor points referred to above are within the power and judgment of the individual practitioner. He is a social reformer in the highest sense of the word. Everywhere he comes in contact with misery and vice, with degraded habits and injurious customs, with the numerous families of the poor, and the sterile pampered homes of the rich. To all he can give advice with benefit, and in every sphere of labour diffuse a knowledge of hygiene. If there be a "disgrace to the family," it may be within his power to show that it is a species of eccentricity, bordering on insanity, which guides the culprit's action; and it is education and moral culture that will reclaim him, not punishment. The matrimonial alliances of those families that give him their confidence, may be rendered safer and happier by his skill and knowledge as to the detection and demonstration of hereditary diseases. If a family become inconveniently numerous, from the indolence of the mother, he can show that, in many instances at least, the natural check is prolonged lactation and a diligent attention to maternal duties. And thus the enlightened and conscientious practitioner can act with the multifarious relations of hygiene.

* * * * * * *

Whether a mere profession of religion, and the restraint of the ecclesiastical police which such profession involves, can check aberrations from the true principles of medical ethics, would appear from the preceding and similar instances to be somewhat doubtful. The heart of man "is deceitful above all things;" and, while the religious professor flatters himself that he is doing his full Christian duty, by a strict attention to the forms and ordinances of the church, the spirit and essence of Christianity is wanting, and he forgets its fundamental principle of conduct, the law of Divine Wisdom and Love, "Do unto others as ye would that men should do unto you." This only can be the foundation alike of medical ethics and medical etiquette. Much, no doubt, is to be gained by a natural suavity of demeanour and humility of feeling, by gentlemanly training and associations, and by a fear of the results consequent upon a breach of etiquette or ethical manners; but the only true and universally safe principle is that principle just announced. And we would commend the comment of St. Paul on this new law of love, revealed by Christ, to be found in his letter to the Christians of Corinth, as the best code of medical etiquette, and as comprising all that is necessary for soothing or preventing those bick-
erings, jealousies, rivalries, and deadly enmities, felt and too much indulged by some professional men. "Love," St. Paul says, "is forbearing, obliging; love is not envious; love is not arrogant, is not proud, is not rude or selfish, or irritable or slanderous. It has pleasure in truth, and not in falsehood. It is content with all, confides in all, trusts to all, bears with all. The highest rank, the greatest skill, the profoundest learning are, without this, nothing; the greatest performances and accomplishments in literature and science without it are vain as the jingling cymbal." Such are the sentiments, freely translated as to form, but correctly translated as to the spirit, of the inspired philosopher and martyr of early Christianity. How much, from time to time, has there been occasion to regret that these sentiments have not influenced the feelings of many even distinguished philosophers and practitioners in the course of their intercourse, whether personal or literary!

We have brought to the test of these principles the rules of the Manchester Medico-Ethical Association. This institution was founded to frame a code of etiquette for the guidance of its members, to decide upon all questions of usage or courtesy in conducting medical practice; to support the respectability and maintain the interests of the profession; to promote fair and honorable practice; to correspond with bodies or individuals in other parts of the kingdom on any matter touching professional interests; and, by its moral influence and the exercise of a judicious supervision, to prevent abuses in the profession.

The following are the bye-laws which regulate the disqualification for membership:

"Any practitioner who may act in opposition to the principles involved in the six succeeding laws, shall not be eligible to the membership of this association; and if already a member, he shall, on infringing the same, be liable to expulsion.

1. No member shall practise, professedly and exclusively, homoeopathy, hydrotherapy, or mesmerism.

2. No member shall, by advertisement, circular, or placard, solicit private practice.

3. No member shall be the proprietor of, or in any way derive advantage from the sale of, any patent or proprietary medicine.

4. No member shall give testimonials in favour of any patent or proprietary medicine, or in any way recommend their public use.

5. No member, who may keep an open shop, shall sell patent medicines, perfumery, or other articles than pharmaceutical drugs and preparations.

6. No member shall enter into compact with a druggist to prescribe gratuitously, and at the same time share in the profits arising from the sale of the medicines."
Looking at these by-laws, with reference to medical ethics, the first consideration which strikes us is the total absence of any fundamental principles of medical morals or etiquette, the exclusively trade character of the laws, and their inadequacy to the purpose aimed at. If a member may not be permitted to practise any one of the three leading varieties of the day exclusively, there is nothing on the face of the laws to prevent him practising them conjointly. If a member may not solicit private practice by advertisement, circular, or placard, he may fee a reporter to publish a speech or a puff; or he may advertise a professional publication in the newspapers, get a paragraph inserted in the same as to the successful use of chloroform, or permit a friend to admire in print a singularly skilful operation. The three laws as to the ownership, recommendation, and sale of patent medicines are of questionable wisdom. The demand for remedies having specific objects, and according to approved formulæ, is one that is universal; it is felt in the profession as well as out of it. The authorized Pharmacopœia is a proof of the one; the "antibilious pills," "antiscorbutic drops," "family pills," and the thousand nostras of the quacks, are the proofs of the other. The demand then being certain, why leave the sale of these specific compound remedies exclusively to the ignorant pretender? Why not let the by-law run that the practitioner shall not patent, recommend, or sell any remedy, the composition of which is not known to the Society and approved by them?

A Case of Tephlo-enteritis, or Inflammation and Perforation of the Cæcum, from the lodgment of a bone, pointing externally. By J. W. Rohrer, M. D., of St. Louis, Mo. (St. Louis Med. and Surg. Journ.)

On the 5th of October, 1847, about 2 o'clock, A. M., I was called to see Christian Lauter, residing about two miles from the city, who, as the messenger stated, was laboring under a most distressing disease of the bowels. Mr. Lauter is apparently a man of regular habits, and certainly of a vigorous constitution, aged 40 years.

On my arrival, about 2 o'clock, I found the patient in extreme agony—lying on his back with his knees drawn up, nausea and vomiting of bilious matter—pulse rather small and wiry, respiration frequent, pain continuous and of a twisting character. The pain was referred particularly to the right iliac fossa, lancing towards the thigh. I ascertained that the case was considered colic, by those around him, and that stimulants and
cordials at hand had been freely administered, previous to my arrival, which exasperated the symptoms.

The bowels had not been moved for 48 hours. A disconnected history of a course of treatment by another physician, for disturbance of the bowels, immediately preceding this attack, deterred me from using the lancet, which might otherwise have been indicated. A large dose of opium was accordingly administered, and repeated in an hour. A moderate dose of calomel was also given. Mustard at hand, was applied externally over the abdomen, and frictions of the same to the cold and contracted extremities. The second dose of opium was followed by excessive and offensive evacuations.

The above prescription was found adequate to control the bowels, and the patient was left comparatively calm and easy, extremities warm, skin moist and improving. Evening. Found the patient still calm, the bowels completely controlled. On examination, however, I discovered a slight tumefaction in the region of the cæcum, and extreme tenderness on pressure.—Ordered a blister over the tender point.

October 6th. Strong symptoms of peritonitis: Fever, pulse hard and frequent, respiration thoracic, extreme tenderness and pressure, and rapidly increasing distension of the abdomen, the patient lying upon his back with his knees drawn up as on the previous morning, the bowels still disposed to be open. Ordered venesection—ad deliquium animi, blisters from ileum to ileum, calomel and large doses of opium.

Evening. Pretty much the same. Distention of the abdomen still increasing. Ordered stimulating dressings for the vesicated surface, and the application of warm spirit of turpentine with flannel to the abdomen above the blisters. Mercury by inunction, the calomel and opium continued.

October 7th. Has had one evacuation in the last twelve hours. The pain and tumefaction in the right iliac increasing—abdomen tense as a drum, strangury. Ordered demulcent drinks, and the former prescriptions continued.

October 8th. Had eight or ten distressing and offensive evacuations during the night, tympanitis subsiding a little, pain in the iliac persistent, distinct chill, the specific effects of the mercury evident. Ordered barley water, a little chicken broth and
A Case of Tulplo-enteritis, &c.

B. Quinia sulph. gr. vi.
Ext. hyoscyam. " xii.
Pulv. opii " iv.
M. ft. Pills No. xii
S—One every three hours.

October 9th. The patient improving. Prescription continued. Allowed a little wine, and soothing dressings to the extensive blisters.

October 10th. The pain and tumefaction in the groin increasing. Great improvement in every other respect. Diet more liberal.

October 14th. The bowels rather lax. Ordered opium to be given occasionally.

October 23d. Tumefaction more evident, as the tension of the abdomen subsides, and presents itself under the form of a large and painful tumour, threatening suppuration.—Ordered emollient poultices and supporting diet. Quinine continued.

October 30th. The patient's sufferings being insupportable, and fluctuation of the abscess distinct, C. J. Carpenter, M. D., was consulted as to the propriety of opening the abscess, which he performed with great satisfaction, and relief to the patient. More than half a pint of pus was discharged in a jet, with a large amount of gas, so fetid that the presence of fecal matter was at first suspected. On examination, however, no feces could be detected.

The induration of the parietes now subsided slowly. After a few days, the patient was able to walk about, but a small opening and slight discharges continued until the latter part of February, 1848, when it healed up.

On the 7th of March, Mr. Lauter called on me to open a small abscess, which, as he states, commenced forming immediately after the original opening healed. After removing a strip of adhesive plaster, I found a small opening about half an inch below the original, directly over the cæcum, and on close examination, discovered a small bone projecting, pointing directly outward, which was removed and found to measure one and three-eights of an inch in length, and about a line in diameter. It is somewhat flat, and roughened on the edges.

The opening is now healed, a little induration, but no tenderness perceptible.

Mr. Lauter has resumed his employment, and declares himself as well as ever. He and his wife states that they remember distinctly of his having swallowed a small bone of a chicken in September, 1846, which caused him much uneasiness at the time.
On the Treatment of Poisoning by the Bite of a Rattlesnake.
By Josiah Trowbridge, M.D.—(Buffalo Med. Jour.)

Sir:—In your Journal for the month of July, I notice an account of the symptoms of, and treatment for, the bite of a rattlesnake, in the case of the lamented Dr. Wainright, of New York, taken from the Annalist. I am not disposed to make any strictures on the treatment in that case. The bite of a rattlesnake is of rare occurrence in the Northern States of late years, as they have been nearly, if not entirely, exterminated from the settled portions of the country. I will simply relate what has occurred in my own practice.

I came to Buffalo to reside in 1811, and at that time the rattlesnake was common in many localities in the vicinity. I think some six or eight cases have fallen under my care. I distinctly recollect four of them. I recollect also, the prominent symptoms in two of the cases. The first occurred in 1812. A boy of about twelve years of age was bitten on the side of one foot, near the small toe. Being absent from the village, I did not see him until two or three hours after the accident. The limb was then badly swollen to the body, the skin was discolored and mottled, and, if I recollect aright, of a green and yellow color. The pain was severe, and the pulse accelerated. I immediately directed the administration of Olive Oil, both externally and internally; Internally, by the administration of $\frac{3}{2}$i every half hour, and externally, constantly, with friction. Under this treatment the swelling subsided, and the boy recovered.

The other was a man of fifty years of age, of intemperate habits. He kept two large rattlesnakes in a box. At about 10 o'clock, P. M., being somewhat intoxicated, he removed the snakes from the box to the floor, and began playing with them. At length one of them struck him between the thumb and forefinger. My office being in the vicinity, a student of mine was requested to attend. He applied salt and vinegar to the hand, and administered aqua ammoniac internally, without relief. At half-past 11 or 12 P. M., I was called. At this time the hand and arm were badly swollen to the elbow, and the pain severe. I directed the administration of the Oil as in the former case. I requested the student to remain with him, and to see that the remedy was faithfully applied until the threatening symptoms subsided. The next morning, at 7 or 8 o'clock, I met the patient upon the side-walk, free from any ill effect from the poison. All the other cases were treated in the same way, and all recovered.

I am aware that numerous trials and long experience are
required to establish the character and value of any remedy, and I have not great confidence in antidotes, and less in specifics. In looking back into some of the old medical periodicals, I find that Sweet Oil, as an antidote to the poison of the rattlesnake, is not a new remedy. In Vol. 2d, No. 2, Article 4th, of the Medical Repository, published in 1805, there is an article republished from the Charleston (South Carolina) City Gazette, a part of which I quote. "In great cities, particularly in London, a number of persons procure their livelihood by catching vipers. They are employed by Chemists and Apothecaries, &c. I remember some years before leaving England to have read in the Philosophical Transactions of the Royal Society in London, a curious circumstance relative to one of these viper catchers. A member of the Society had received, causally, information that a man engaged in this business was frequently bitten, and that he cured himself with Olive Oil. After considerable inquiry the viper catcher was found, and the questions asked, whether he did cure himself with the Oil, and whether he was willing to gratify a number of gentlemen by an exhibition of the fact? The man answered affirmatively to both questions. Accordingly a most numerous meeting of the Royal Society was convened, composed of a considerable number of the nobility, &c. The viper catcher attended, accompanied by his wife, with a large viper, and laying his arm naked to the shoulder, suffered the irritated reptile to strike, which it did forcibly. His wife permitted the poison to operate till her husband's head, face and tongue were greatly swelled, his arm and face also very black, and his senses much affected, when she applied the oil, by pouring a small quantity down, and bathing the part bitten. The man gradually, and soon recovered. This circumstance being strongly impressed upon my mind, and knowing that the poison of an English viper is considered, in that country, the most subtle in nature, determined me to try its antidotal power in the bite of the rattlesnake, the first opportunity which should offer, on my retirement from Charleston to the back Country, now Pendleton county. I was also particularly impelled to make the trial from a consideration of the newness and wildness of the country, and the number of my family, beside which, there were hardly, a dozen more in the country. This was in the year 1783. In about a month after my arrival, a person in full speed came to my camp, and most urgently begged to know if I could assist a man who had just been bitten by a large rattlesnake. Although I lamented the misfortune, I rejoiced at the opportunity it offered to ascertain fully the property of Olive Oil as an antidote to this deadly poison. Accordingly I put a vial of oil in my
pocket, and mounted the messenger's horse. When I arrived at the unfortunate man's cabin, he struck me as the most frightful object I had ever beheld. His hands and face were prodigiously swelled, the latter black, his tongue proportionably enlarged and out of his mouth, his eyes as if shooting from their sockets, his senses gone, and every appearance of immediate suffocation. He had been struck on the side of the foot, about the middle, in the hollow. Immediately, but with great difficulty, I got down two table-spoonfuls of oil. Its effects were almost instantaneous, and astonishingly powerful, in counteracting the poison, as appeared by the strong, though quick convulsions that followed. (How is it ascertained the convulsions were the effects of the remedy and not of the poison?—Edi. South. M. and S. Jour.) In about thirty minutes it operated strongly, both emetically and cathartically, after which the swelling of the head and face, &c., gradually abated, and the tongue began to assume its place. In about two hours, he was so far recovered as to be able to articulate, and from that time recovered fast. The oil inwardly taken, and applied to the foot and leg, both exceedingly swelled, did not exceed seven or eight spoonfuls.

The number of cases of a like nature, in the course of twelve years, has been considerable, in all of which Olive Oil has proved itself to be peculiarly adapted, and fully adequate to the worst of cases, if timely applied.

I find another case recorded in the eighth volume of the Medical Journal of Medical Sciences, page 397, communicated by Dr. Horner, which terminated fatally. It appears that 3/2 iss. of Olive Oil was administered in two doses, at a long interval between, and the last dose when the man was in articulo mortis. The principal reliance in this case seems to have been upon cupping, external irritants, aqua ammoniac, &c. I do not think that this case makes either for, or against the use of Olive Oil. I copy from the Boston Medical and Surgical Journal of January 5th, 1848, from an article communicated by Dr. Stephen W. Williams, of Deerfield, Massachusetts, the following additional testimony in favor of the use of Olive Oil. "The use of Olive Oil may be strongly recommended for the bite of the rattlesnake. My grandfather, Dr. Thos. Williams, formerly a very distinguished physician in this town, once restored a patient bitten by a rattlesnake, apparently in the last stage of life, by the external and internal administration of Olive Oil. Mr. J. Miller, of Pendleton, South Carolina, observes, that Olive Oil, taken internally in the quantity of a few spoonfuls, and applied to the bitten part, has proved itself fully adequate to the worst cases if timely administered."
It seems to me that the results in the cases here related, furnish abundant testimony in favor of an early and diligent use of this remedy. That there may be cases which will be fatal under any circumstances, and in spite of the Olive Oil, or any other remedy, is probable, but if it succeeds in a large majority, it is sufficient to warrant its use, and a reasonable reliance upon its powers as an antidote to the poison.

[And yet after all what great virtue can there be in Sweet Oil? Ammonia does possess very evident properties, and may be an antidote to the virus of the rattlesnake; but upon Olive Oil alone we should be loath to trust a case.—*Edt. South. Med. and Surg. Jour.*]

Report of a Curious Surgical Case. By John G. Kyle, M. D., of Cedarville, Ohio.—(Western Lancet.)

In the spring of 1846, I was called to see —— Moore, a boy, aged two years; had been a very strong, healthy and fleshy child—now weak—much emaciated and suffering great pain in the bowels; face pale, extremities cold, no appetite, secretions nearly natural, abdomen very tender on pressure, with a swelling or ridge semilunar in shape, commencing on the left and terminating on the right side of the abdomen, and running so nearly to divide the umbilical from the right and left iliac regions—about 14 lines in width, and one or two in height, skin slightly reddened, with the appearance of pointing at the extremity of the swelling on the right side, as if some foreign body was trying to make its way out, being as yet, however, rather uncertain what direction it should take, in order to reach its intended destination.

The history of the case was, that, fourteen days previous to that time, the boy was badly choked by something, which after some considerable difficulty he swallowed. After which his parents noticed nothing peculiar for two or three days, when he became fretful and peevish, lost his appetite, and had pain in his bowels. The parents thinking their child had colic gave anodynes, cathartics, and almost every thing else, but finding him growing worse and sinking rapidly, brought him to the village, where I then resided, Roundhead, Ohio, for advice. Being called on, I found the boy in the condition already described. The history of the case, with the then present symptoms, led me at once to conclude that the boy had swallowed some solid indigestible substance, and it having become entangled in some fold of intestine, had passed through its coats
and was now pointing to the surface, and that an operation would be necessary to relieve the boy. The parents were, however, rather doubtful about the success of an operation, and asked until the next morning to deliberate on the matter, to which I readily assented.

When the morning came, Mr. Moore called and requested me to call and operate on his son, as he believed he would die soon, unless immediately relieved.

The symptoms more aggravated than yesterday—I, in the presence of Dr. A. De Long, L. M. White, Esq., and several other gentlemen, proceeded to operate in the following manner:—The boy being secured, I made an incision ten lines long about equidistant from the umbilicus and ant. sup. spinous process of the right ilium cutting carefully through the integuments and abdominal muscles, a foreign body could now be felt under the peritoneum, which I punctured with a sharp pointed bistoury, and brought to view a brown corn straw, which I seized with a small pair of forceps and drew out, applied simple dressings, the wound healed by the first intention, and the boy regained his health in a short time. The corn straw was forked near the middle, measured thirty-three lines in length, one in diameter, and at the fork nearly three lines across. It had evidently been swallowed by the boy fifteen days previous to the operation.

The novelty of the operation, the causes which led to it, and the happy result of the same, are the only apologies the writer has for thus making this case known to his professional brethren.

Formulary of the Hôpital du Midi (Venereal Hospital of Paris).
By M. Ricord.—(London Lancet.)

NON-VIRULENT DISEASES.

1. Injection for Balano-posthitis.—Make three injections a day between the glans and prepuce with the following fluid:—Distilled water, three ounces; nitrate of silver, two scruples.

2. Abortive Treatment of Blennorrhagia.—Make one injection only with the following liquid:—Distilled water, one ounce; nitrate of silver, fifteen grains. And take every day, in three doses, the following powder: Cubebs, one ounce; alum, thirty grains.

3. Injection for Blennorrhagia, when the period for Abortive Treatment is passed.—Make three injections daily with the following liquid:—Rose water, six ounces and a half; sulphate of zinc, and acetate of lead, of each fifteen grains.

4. Internal Treatment of Blennorrhagia.—Take one table-
spoonful of the following emulsion three times a day:—Copaiba, syrup of tolu, and syrup of poppies, of each, one ounce; peppermint water, two ounces; gum arabic, a sufficient quantity; orange flower water, two drachms.

5. Acute stage of Blennorrhagia.—Twenty leeches to the perinaeum; bath after the leeches; refreshing drinks; rest in bed; low diet; suspensory bandage. Take one of the following pills four times a day:—Expressed and inspissated juice of lettuce, (lactuca sativa,) and camphor, of each, forty-five grains; make twenty pills.

6. Gleet.—Make every day three injections with the following liquid:—Rose water, and Roussillon wine, of each, six ounces; alum and tannin, of each, ten grains.

7. Subacute Epididymitis.—Rub the testis twice a day with the following ointment:—Stronger mercurial ointment, and extract of Belladonna, equal parts of each; a poultice to the part after the ointment, and rest.

8. Acute Epididymitis.—Fifteen leeches to the perinaeum, and the same number in the groin corresponding to the affected epididymitis; bath after the leeches; barley-water for common drink; low diet, rest, and poultice.

9. Chronic Epididymitis.—Apply Vigo’s plaster to the testis, and wear a suspensory bandage.—(Simple plaster; yellow wax, pitch, ammoniacum, bdellium, olibanum, mercury, turpentine, liquid styrrax, and volatile oil of lavender, are the component parts of Vigo’s plaster.—(Reporter of Lectures.)

VIRULENT DISEASES.—PRIMARY SYMPTOMS.

CHANCRE.

10. Abortive Treatment of Chancre.—Within the first five days of the contagion, destroy the chancre with potassa fusa cum calce (pâte de Vienne.)

11. Regular non-indurated Chancre.—Frequent dressing with the aromatic wine,* extreme cleanliness, occasional light cauterization with the nitrate of silver. Rest, demulcent drinks; when there is inflammation, antiphlogistics, purgatives, and emollient applications. (N. B. No mercury.)

12. Phagedaenic Chancre.—Complete cauterization with the nitrate of silver, the liquid nitrate of mercury, the potassa cum calce, or the hot iron, according to circumstances. Afterwards

* Aromatic wine, (Parisian codex.) Aromatic species, (viz., the dried tops of the sage, balm, thyme, wild thyme, marjoram, hyssop, peppermint, wormwood,) two parts; vulnerary spirit, (viz., alcoholic distillation of anthyllis, vulneraria, origanum, gaphnphium dioicum, arbutus uva ursi, and several others, known under the name of vulnerary flowers, and largely exported through Europe by the Swiss for popular purposes,) one part; red wine, sixteen parts. Macerate for a few days, then filter.
lotions with aromatic wine, three ounces; extract of opium, three grains; or, aromatic wine, eight ounces; tannin, thirty grains; or, distilled water, three ounces; tartrate of iron and potash, four drachms; or, in the scrophulous diathesis, distilled water, three ounces; tincture of iodine, one drachm; or, sulphur ointments, and sulphurous baths. Internally: tartrate of iron and potash, one ounce; distilled water, eight ounces. One ounce three times a day.

13. Indurated Chancre.—Three dressings a day, with the following ointment:—Calomel, one drachm; axunge, one ounce. (N. B. Mercury is used internally for the indurated chancre: as to the mode of administration, see secondary syphilis, No. 21, as the metal is given in the same manner in both cases.)

14. Acute non-Specific Adenitis, vel Inflamed Bubo.—Twenty leeches on the tumour, emollient cataplasms, barley-water as ordinary drink, rest, broths. If fluctuation be detected, let out the purulent matter by a free incision.

15. Abortive Treatment of the Bubo Consecutive, by Absorption of the Virus, to the non-Indurated Chancre.—Deep cauterization of ten minutes' duration, with the potassa fusa cum calce, and await the fall of the eschar. (N. B. Analogous to the early destruction of chancre.)

16. Bubo Consecutive to the non-Indurated Chancre, which inevitably Suppurates.—Use antiphlogistics according to circumstances, and then free the purulent matter by cauterization with potassa fusa; gradually destroy afterwards, by the use of caustics, the glandular mass which lies at the bottom of the open bubo. To the poultices used after cauterization may be added an ointment, of equal parts of extract of belladonna and mercurial ointment.

17. Horse-shoe Bubo and Gangrene.—Horse-shoe and Phagedaenic ulcers in the groin, resulting from a suppurating bubo, require the dressings mentioned in No. 12. Gangrene: Chloride of lime, one ounce; distilled water, three ounces. This lotion is to be used several times a day. Or, powdered charcoal, powdered Peruvian bark, equal parts of each, to be thickly applied to the sore.

PREPUTIAL COMPLICATIONS.

18. Phimosis.—Inject between the glans and prepuce the aromatic wine with opium, as mentioned in No. 12, and use emollient and sedative applications; if gangrene be imminent, operate.

19. Paraphimosis.—Keep the organ raised, and surround it with cold compresses. Bland diet, refreshing drinks; endeavour
to reduce or free the constriction by an incision, according to circumstances. After the strangulation is relieved, use emollient and antiseptic applications combined with opium.

SCROFULOUS COMPLICATIONS.

20. Order every day the following emulsion in three equal doses:—Iodine, three grains; oil of sweet almonds, one ounce; gum arabic, a sufficiency; almond emulsion, three ounces.

SECONDARY SYPHILIS.

21. Order every day three tumblers of decoction of saponaria leaves, and put into each tumbler one table-spoonful of sirop de cuisinier, (N.B. Sirop de cuisinier: sarsaparilla, borage and white rose leaves, senna, aniseed, honey, and sugar;) and take every day one of the following pills:—Proto-iodide of mercury, inspissated juice of lactuca sativa, of each forty-five grains; extract of opium, fifteen grains; extract of hemlock, one drachm and a half. Mix, and make sixty pills.

22. *Slight Stomatitis.*—To gargle three times a day with the following liquid:—Decoction of lactuca sativa, five ounces; honey, one ounce and a half; alum, one drachm and a half.

23. *Mercurial Stomatitis.*—To gargle three times a day with the following liquid:—Decoction of lactuca sativa, five ounces; honey, four drachms; hydrochloric acid, fifteen drops.

24. *Salivation.*—Order every day one drachm of flowers of sulphur, incorporated with honey. As a common beverage, the nitric acid lemonade. Gargle three times a day with decoction of lactuca sativa, five ounces; honey, four drachms; hydrochloric acid, fifteen drops.

25. *Mucous Patches in the Mouth.*—Gargle three times a day with decoction of hemlock, six ounces and a half; bichloride of mercury, three grains.

26. *Mucous Tubercles around the Anus* (Condylomata.)—Put twenty leeches to the perinæum. Take every evening a small enema of a decoction of poppyheads, cold, and mixed with twenty drops of laudanum. As an habitual beverage, take linseed tea, sweetened with sugar and almond emulsion.

27. *Vegetations.*—Put twice a day on the vegetations the following powders:—Powdered Savine, oxide of iron, calcined alum, of each one drachm.

TERTIARY SYPHILIS.

28. Order one tumbler of decoction of saponaria three times a day. In each tumblerful put a table-spoonful of the following syrup:—Syrup of sarsaparilla, one pint; iodide of potassium, one ounce.
Treatment of Phthisis Pulmonalis by Cod Liver Oil. By Dr. Hughes Bennett. (Monthly Journal and Retrospect.)

The effect of the oil in many cases of phthisis is very striking, and is well seen in hospital and dispensary practice. Individuals presenting emaciation, profuse sweats, constant cough and expectoration, as most prominent symptoms, with a degree of weakness that prevents their standing alone, after a few week's use of it are enabled to get up with ease and walk about, with a visible improvement in their general health, and an increased amount of flesh. The physical signs of the disease may continue unaffected for some time; but if the treatment be continued, the moist gurgling rales are exchanged for dry blowing sounds, which become more and more persistent, pectoriloquy is merged into bronchophony, the respiration is easier, and a check is evidently given to the ulcerative process, and the formation of purulent matter in the air-passages. In this state, patients often feel themselves so well that they insist on leaving the hospital, or give up their attendance on the dispensary. Dr. Bennett has frequently found it impossible to prevail on such persons to continue the treatment, and the consequence is, that, again returning to their often unhealthy employment and bad diet, and exposed to the other causes favourable to the production of the disease, the distressing symptoms again recur. Several cases, with one or more caverns in the lungs, have in this manner returned to the Infirmary from four to seven or eight times during the last six years, and on each occasion have gone out in their own opinion perfectly cured.

Notwithstanding the difficulties which have presented themselves in bringing about a complete cure of the disease, Dr. Bennett has succeeded, in several cases, in ascertaining that caverns have completely healed up, every symptom and physical sign indicating their presence having disappeared, and only slight dullness on percussion, and increased vocal resonance remaining as a proof of the puckering and induration of the pulmonary parenchyma attendant on the cicatrix. He gives two unequivocal cases where this occurred, and alludes to others which he purposes publishing at some future time.

Most cases of phthisis pulmonalis, especially in the advanced stage, are affected with more or less dyspepsia, which renders the stomach irritable, causes total loss of appetite, and is often the cause that prevents nourishment from being taken. In many instances there is no difficulty in employing the oil under these circumstances, but in others it cannot be retained on the stomach. It will then be necessary to calm the irritability of
the organ, and the best remedy for this purpose, according to Dr. B.'s experience, is naptha. It is to the power this substance possesses of checking vomiting, and thereby allowing nourishment to be retained, that he attributes the advantages which have attended its use in the practice of Dr. J. Hastings, and others. The diet should always be nutritive, without being stimulating; and counter-irritation to the chest is an excellent auxiliary. This treatment should be perseveringly persisted in; whilst, to prevent fresh exudations of tubercular matter, an equable temperature is of the highest importance. To equable temperature must be ascribed the advantages of favoured localities for phthisis, and with proper precautions it can be very well maintained in this climate.

On a Premonitory Symptom of Salivation. By John Tomes, Esq., Dentist to the Middlesex Hospital.—(Med. Times.)

In salivation produced by mercury, the effect is first discernible upon the gums. Some hours previous to the coming of the metallic taste, and to the fetor of the breath, and also to the soreness and discomfort which mark the influence of mercury on the system, the gums show indications that these conditions are about to appear—in fact, that the patient will in a few hours be salivated. The state of gum I am about to describe is, in fact, a premonitory sign of ptyalism, for should it appear, and the mercury be immediately discontinued, yet salivation will come on. The sign is this:—the adherent portion of the mucous membrane of the gums assumes an opaque white colour, contrasting strongly with the non-adherent portion, which preserves its natural hue or becomes more red. The free edge of the gums is moveable, but that part which lies over the edge of the alveoli is firmly tied down to the periosteum; and as the edges of the alveoli present a festooned line, so the whitened mucous membrane presents in a corresponding festooned line. Again, where the mucous membrane is loosely reflected from the gum to the cheek, the natural colour is preserved. The whiteness of gum is produced by an increased secretion of epithelium, which from being thicker and more opaque renders the colour given by the vessels to the subjacent tissue less apparent.

The surface of the mucous membrane when deprived of epithelium is studded over with innumerable small conical elevations or papillae. The thickened epithelium is readily rubbed off the tops of the papillae, while it retains its full thickness in the hollows between them; thence, if closely inspected, the
gums will not be seen to present a uniform white hue, but a mottled aspect; and this because the epithelium is thin over the papillæ and thick between them, and therefore more colour will show through at one part than at another. With the increased thickness there is a decrease of tenacity between the scales that form the epithelium, for the surface may be much more readily rubbed off than when in its natural state.

This curious and useful premonitory sign of coming ptyalism was, I believe, first noticed, and its value pointed out, by Mr. Corfe; at all events, he first of all drew my attention to the fact, and I am not aware that it has been described by any author. Since, however, Mr. Corfe mentioned the result of his observations as to the constancy of the sign, I have verified for myself its presence in all cases of salivation that have come under my notice, and from these I have written the foregoing account.

If you would make use of this indication in your practice, it will be necessary that you should carefully note the state of the gums at the time the mercurial treatment is commenced, for it is quite possible that other agents may produce a similar state of gum, and that such may exist previous to the exhibition of mercury.

The nature and use of glycerine, the sweet principle of oils, which may now be had of any first-rate druggists, are thus stated by Mr. Startin:

When perfectly pure and anhydrous, glycerine is a nearly colourless liquid, of a sweet taste and syrupy consistence; it has a faint but not disagreeable odour, and possesses a great affinity for water, with which it readily combines; it also easily unites with oils, and dissolves many gums and resinous substances; it will neither crystallize nor ferment like a sugar, nor will it evaporate beyond a certain point, but is destroyed by ebullition.

The antiseptic and uncloying properties of glycerine first led me to attempt its use for medical purposes, as I believed, by the means of such properties, lotions, poultices, baths, &c., might be rendered peculiarly emollient and soothing. When preternatural dryness, roughness, or harshness of the skin was present, and particularly in those cases where the hair or scalp was involved, as in instances of dandriff or pityriasis of these parts, my expectations were more than realized by reducing my conjectures to practice; and I found that by the addition of
one-fourth to one-eighth, or even one-sixteenth of glycerine to any lotion, poultice, or external application, all the indications I have mentioned were fulfilled, and that such application never became perfectly hard and dry, whilst it soothed and tranquil-
ized the diseased part, by attracting moisture from the air and thus keeping up a constant evaporation from the surface; its antiseptic properties also, in a great degree, prevented the un-
pleasant odour of vitiated secretions or discharges, whilst its undrying nature did not permit the formation of hard scabs or incrustations, which it is known very often interfere with the healing process, and occasion much pain on their removal. I have had little experience in the use of glycerine internally, but it is a mild stimulant, antiseptic and demulcent, and might be employed to sweeten many articles of food or drinks for those invalids whose disordered digestive organs would forbid the use of sugar. Pills made with the addition of a few drops of glycerine never become dry, and syrups and extracts by its means are kept from evaporation to dryness, as also from fer-
mentation, and the formation of crypto-gamous vegetation, or mouldiness, and many other such uses for this agent will not fail to suggest themselves; I shall briefly enumerate some diseases of the skin in which I have employed glycerine with most benefit and success; these are pityriasis or dandriff (par-
ticularly that form of the disease which I have termed P. con-
genita,) lepra, psoriasis, lichen (in its dry advanced stage,) impetigo inveterata, and prurigo. I have found glycerine also a useful addition to lotions in the incrusted forms of lupus, or herpes excedens, and to various syphilitic or strumous eruptions, which have a tendency to produce foetid discharges and hard crusts, for which reason it has proved of service in the scabbing stage of small-pox. As a wash for the hair and for chapped hands, face, or nipples, combined with a little rose-water and a few grains of borax (the glycerine being in the proportion of one-sixteenth.) this remedy furnishes, perhaps, one of the most elegant and efficacious preparations which has been introduc-
ed. It may also be combined with soaps which it renders peculiarly softening and efficient, particularly to individuals who have a dry or hard skin.

The Sore Throat—Tonsillitis et Thacheitis, Croup.

[For about two months past, an epidemic tendency to sore throat has been observed in our community. It commences like common catarrh, then inflammation and ulceration, but we believe most frequently an exudation covers the Tonsils; and
so far as we have heard, in nearly every case where croup supervened, death has occurred. It mostly attacks children.

We have not reliable information at present, but it is intimated, that the same atmospheric disposition is prevailing pretty extensively throughout the South. Will some friend prepare a description of the disease for the Journal? In the mean time we publish the following Articles, the first taken from the Summary of the Transactions of the Col. of Phys. of Philadelphia:]

M. Guersant jr. in a paper in the Gazette des Hôpitaux, Nos. 48 and 52, presents some very interesting remarks on the treatment of croup. To constitute this disease, he acknowledges, with the best modern authorities, that the presence of a membaniform exudation in the larynx is essential. The disease, he remarks, may commence at the tonsils, in the bronchi, or suddenly in the larynx itself. In the first case there is more or less redness of the pharynx with swelling of the tonsils, and, what is of great importance, these latter are covered with little white patches, which sometimes extend as far as the velum or uvula.

The medical means for the treatment of croup are according to M. Guersant very limited. Depletion, once so freely employed, under the supposition that the disease was a simple inflammation, is very rarely, he conceives, of any utility, and is often injurious. Emetics have proved far more useful as adjuvants, by favouring the detachment and expulsion of the false membranes—but alone are not to be relied upon. Mercurials, especially when used early, have, he believes, often exerted excellent affects upon the disease—they are beneficial only in cases where the dyspnœa is not very urgent, or the patient much enfeebled—used alone they have seldom effected a cure. Hence M. G. conceives that it is upon surgical treatment we must in the generality of cases chiefly rely. Under the head of surgical treatment he includes the application of caustics to the pharynx, and the operation of tracheotomy. As a local application he prefers the nitrate of silver. Weak solutions of this article are sufficient at the earliest stage of the disease, when there is little else than the pseudo-membranous deposits upon the pharynx. In some instances these cannot be detected in an examination of the fauces, being deposited, from the first, solely in the larynx, but such cases are rare. Occasionally the deposits are not detected in the pharynx in consequence of the first stage of the disease being already passed.

In the early period of croup the symptoms are but little ur-
gent; and a physician who is not accustomed to treat children, often neglects to examine the throat. M. Guersant makes it an invariable rule, to make such examination whenever a child manifests any febrile reaction; and in this manner he has frequently been enabled to detect the approaching disease, the presence of which would not, otherwise, have been suspected. At first, and while the tonsils are covered with the plastic exudation, the symptoms, as already remarked, are not severe—but this is, nevertheless, a precious moment for the surgeon; he may now frequently arrest a disease, which, if allowed to go on, is usually fatal.

While employing the solid caustic, the child should be held by a strong assistant, the tongue must be depressed by a broad instrument, as a very large spatula, or the handle of a large spoon, or what M. G. prefers, a large wooden tongue depressor. For fear of accidents the caustic should project only very slightly from its case. Many practitioners prefer the caustic in solution, and in the earliest stages of the disease a weak solution applied three times a day will suffice, but in serious cases the solution must be very strong—1 part to 3 or 4 of water—and need, then, be used only once a day. It may be applied by means of a sponge fixed to the end of a piece of whale-bone by sealing wax. To prevent the extension of the false membrane, the caustic should be applied beyond its margin as well as upon it. The application frequently dissipates the exudation from the tonsils, and yet it may extend to the epiglottis. The caustic is still our best remedy. A larger sponge is now required, which must be fixed upon a strong whalebone, bent at an obtuse angle. The operator places himself on one side, and, introducing the sponge directly to the base of the tongue, executes some semi-rotary movements. Sometimes the epiglottis is raised, and the fragments of false membrane are detached from its inferior surface, which may be known by the paroxysm of dyspnoea this gives rise to. The caustic, in these cases, requires to be repeated three or four times in the twenty-four hours.

When, notwithstanding the full and persevering use of the caustic, the disease is not arrested, tracheotomy is our only resource. M. Guersant, has, next to M. Trousseau, performed this operation more frequently than any one else, and he speaks unhesitatingly as to its propriety, and believes that numerous failures arise from its being too long deferred. Cases have been known to recover, after the operation, notwithstanding the false membrane had penetrated even into the larger bronchi. The vital point which cannot tolerate the presence of the slightest amount of the pseudo-membranous exudation is the
Cordæ vocales. In performing tracheotomy M. G. usually employs a straight history, and has several small sponges mounted on whalebone and a curved ring forceps at hand. If the false membrane does not reach into the trachea we have only to maintain the aperture patent, while, when it extends lower down, its removal may be attempted by means of the bent forceps. To maintain the wound open, the canula of M. Trousseau is an admirable instrument. It consists of a double canula, so that when obstruction occurs, the inner one may be changed without disturbing the outer one. M. M. Trousseau, and Bretonneau, prior to introducing the canula, pass small sponges, moistened with a solution of nitrate of silver, into the trachea, but M. G. doubts, the propriety of any such interference, unless false membranes are obviously present. The canula may usually be removed at the end of from eight to twelve days, but sometimes requires to be retained for twenty or thirty.

The air of the chamber should not be kept too dry and hot. To render it sufficiently humid it is a good practice to evaporate some emollient decoctions in the room several times a day. It is difficult to maintain an equable temperature about the child; for a long period M. G. has experienced the utility of wrapping around the neck, without tightening it, a light woollen comforter, having its meshes very widely knitted. By this contrivance, the air, before it reaches the trachea, becomes sufficiently warmed. When the canula becomes obstructed, the inner canula should be removed and cleaned, instead of thrusting sponges into it, which may increase instead of removing the obstruction. When it is deemed proper to cleanse out the trachea, only the most delicate whalebones must be employed. When indurated concretions form, both canule should be removed, and the patient encouraged to expel them by coughing. M. G. has never removed the canula before the tenth day, but M. Trousseau has done so on the third or fourth. He advises us not to remove it suddenly, but, at first, for one, and then for several hours daily.

The croup is so grave and so constantly mortal a disease, that we should have recourse to tracheotomy before it reaches its last stage. M. Trousseau at first recommended its performance as late as possible, but found it almost always unsuccessful; but now, having met with numerous instances of success, he recommends its performance as early as possible—as soon, in fact, as no other chance of success remains. Of 136 children operated upon, M. T. has saved the lives of 32. M. G. has met with 4 successful cases in 36 operations—a success, he conceives, sufficiently great for us to lay it down as a law that we should perform the operation rather than allow the infant inevitably to die.
Dr. Latour relates, in the Gazette Méd. de Paris, of August, 1847, a case of croup in a child of four years old cured by the local application of a solution of nitrate of silver to the larynx. The symptoms under which the patient laboured were sore throat, accompanied with a hoarse cough, fever, anxiety, and other severe symptoms; the uvula and right tonsil being covered with very adherent false membranes. The solid nitrate of silver was immediately applied to all the affected parts within reach, followed by an emetic, by which some fragments of false membrane were brought away. Next day the false membrane had not covered the left tonsil, but appeared to have extended downwards, and the larynx seemed to be involved in the disease, as there was a suppressed hissing cough, and loss of voice. Dr. L. determined to employ a solution of nitrate of silver, seven to eight grains to the ounce. A strong ball of lint being saturated in the solution, this was conveyed to the opening of the larynx by means of a long curved pair of forceps, and then the solution was squeezed out by compressing the ball between the blades. The solution was, in this manner, applied every eight hours, for four days, with complete success; the voice was first restored, and then convalescence was soon fully established.

Dr. Chas. Ware also records, in the Boston Med. and Surg. Journ. for December, 1847, a case of membranous croup, successfully treated by the application to the larynx, by means of a piece of sponge attached to a whalebone, of a solution of nitrate of silver, (sixty grains to the ounce of water.) The disease in this case was evidently limited to the trachea, if not to the larynx, and in this respect was peculiarly favorable for this treatment.

Dr. W. N. Blakeman likewise relates, in the N. Y. Med. and Surg. Reporter, two cases of croup treated successfully with a solution of nitrate of silver. In the first case, which occurred in a child two years of age, after the most active treatment had been perseveringly employed, for about eighteen hours, without avail, the symptoms of suffocation becoming alarming, Dr. Blakeman commenced the application to the larynx of a solution of nitrate of silver, a drachm to an ounce of water.

The application was somewhat difficult, and the dyspnoea very great; a quantity of thick, tenaceous substance was brought away by the sponge, and a large quantity by the vomiting which followed. At the end of ten minutes a second application was made; a larger quantity of membraniform matter was brought away by the sponge and vomiting. The breathing now became less laborious, the crowing sound less sharp, and the child more quiet. After about five hours from the last application of the solution, a third was made; a thick, tenaceous
matter, of a yellow colour, was brought away upon the sponge and by vomiting. After the vomiting, the child fell asleep; on the next morning a slight hoarseness alone remained, which required no further treatment.

In the second case, which occurred in a child six years old, the application of the solution of the nitrate of silver was resorted to at the very commencement of the attack. Two applications were made, each being followed by vomiting, and the discharge of a quantity of tough mucus; and at the end of seven hours the child was well, with the exception of a slight hoarseness.

Croup, or Laryngitis Membranacea, treated by the Use of Argenti Nitras.—(New York Journal of Medicine.)—The topical application of nitrate of silver to the glottis and larynx in this affection, has already acquired something of a professional notoriety. Within a few months past eight cases have been reported in the different Medical Journals and transactions of Societies, and two have been related to us, the authenticity of which we can vouch for—in all of which recovery has taken place. It is no more than justice, however, to state, that in some of these cases the use of the nitrate was not alone depended upon. Antiphlogistic treatment in four cases, consisting of the use of repeated doses of calomel, and the occasional exhibition of antimony, in some form, sufficient to produce nausea was, during some period of the affection, resorted to. The recovery of ten cases of genuine croup (as they all claimed to have been) under one plan of treatment, is a new feature in the therapeutics of this disease, and should at once claim the attention of the profession.

It appears from a review of the history of these cases that the disease was confined to the tonsils, glottis and larynx. In all cases when the inflammation is confined to these parts, we deem the treatment not only feasible but justifiable from the first. But in cases where by extension the trachea, bronchia and lungs are implicated, like the operation for tracheotomy, but little if any good can result from its use. Believing as we do that the pathology of this affection consists in inflammation, primarily seated about the epiglottis or in the larynx—tracheitis and bronchitis being secondary complications, our readers will readily recognise the propriety of early resorting to the treatment, which the success of these cases warrants us in recommending to their consideration. These therapeutic indications are still further confirmed by the recognition of the general law enunciated by Hasse, in his Anatomical Description of the Diseases of the Organs of Circulation and Respiration, viz., “Exu-
datory inflammation, appears in the respiratory passages, to spread invariably from above downwards, never in the opposite direction. Failing to resort to it early and thus not to recognize the light thrown upon the treatment of this almost universally fatal malady, by the recent investigations in pathology, we have not the least doubt that the treatment of membranous laryngitis, or croup, by a strong solution of the nitrate of silver will fail in success as frequently as tracheotomy did in the hands of M. Amusat, Blandin, Roux and Baudelocque. The judicious physician will readily see the propriety of conjoining appropriate antiphlogistic treatment, which must be adapted to the exigencies of individual cases in order to secure, we apprehend, the greatest possible success.*

PART III.—MONTHLY PERISCOPE.

On the Effects of Chloroform—We greatly regret having to place before our readers another case, in which the poisonous effects of chloroform have produced a fatal result. We cannot conceive that, by any ingenuity whatever, this result can be otherwise explained in the present instance; and it appears to us that a most serious liability is now thrown on all those, who encourage the use of chloroform as a means of escaping the pain of operations not themselves attended with even a remote danger to life. We still remain of the opinion expressed in our last Number, that in severe operations the probable benefit is far greater than the probable risk; but no one is justified, as it seems to us, in running such a risk for a mere avoidance of the pain of the extraction of a tooth. We have reason to know that, in the practice of a dentist who has most largely employed it, and whose success is much quoted as an argument in favor of its exhibition for this purpose, troublesome and long-continued disorders of the nervous system have followed its use in several instances.—[Brit. and Foreign Med. Chirurg. Review.

Prof. Williams' Theory of the local effects of Inflammation.—Dr. Williams' summary of the "local elements of inflammation."

"Determination of blood towards the affected part.

"Obstruction of the vessels most affected; by a tonic enlargement of the capillaries; by production and adhesion of white corpuscles in the vessels.

"Distension of arteries and capillaries before the obstruction, causing increased effusion of serum, lymph, pus, &c.

* Great care should be observed in selecting a pure article of the nitrate of silver—the crystals are to be preferred. In the cases reported, the strength of the solution varied, according to the age of the patient, from forty to sixty grains to the ounce of water. The sponge should be soft, conical and securely attached to the whalebone, which may be made of the desired curve by placing it in hot water for a few moments and then holding it in the fingers, for a short time, bent according to the shape wished until it becomes set.
“Emptiness of veins beyond the obstruction, causing increased absorption; hence softening, &c.

“Impeded or arrested circulation at the obstruction, causing a reduction or abolition of vital properties; hence the death of the part, and its removal by ulceration and suppuration, or its decomposition by gangrene.

“Increased circulation of blood around the obstruction, causing exaltation of vital properties; hence spasm, pain, sympathetic irritations, increased secretion, &c.”—[Ibid.

Difference between Chlorosis and Anæmia. Messrs. Becquerel & Rodier. (Thése de Concours.)—“In anæmia considerable but variable increase of the proportion of the blood, notable reduction of the cypher of the globules; preservation of the proportion of the albumen, serum, and extractive matters; slight elevation of the cypher of the fibrine; slight increase of the sum of fatty matters; no change in the proportion of the chlorides and solubles. In chlorosis, the water is equally augmented, but in less proportion; the globules are diminished in quantity, but in a more variable proportion. Some experiments authorize the idea that this diminution is not even constant. The proportional cypher of the albumen and that of the fibrine are a little elevated, as in anæmia. The fatty matters and salts are in normal proportions. _Anæmia,_ on the diminution of the proportion of the globules of the blood, recognises always as a cause of origin an evident cause, palpably, sensibly discoverable. Such are abundant hæmorrhages or fluxes of some kind, long debilitating maladies. The degree which it presents is, in general, in relation to the intensity and duration of the action of the producing cause. It may be produced at will. The causes of chlorosis are not those of anæmia. We do not know any one position incontestable, and have only notions on some influences which may favor its development, but not to produce it directly.”—[Gaz. Méd., from Wood’s Retrospect.

On the Counteraction of the ill effects of Mercury by Dulcamara.—M. Bretonneau, from long observation, has convinced himself that the too prolonged use of mercury gives rise to symptoms, besides those due to its peculiar action on the nervous system, quite analogous to those of secondary syphilis. He has also been led to form a very high opinion of the power which the _solanum dulcamara_ possesses as a preventive or as a curative of these. He lays great stress, however, upon its mode of administration. Two drachms (prepared as decoction) are to be given daily for the first week, four for the second week; and so on, adding weekly two drachms until ten are attained, which brings the patient to the sixth week, at which time the dose is to be gradually diminished, until the two drachms are again attained, when the medicine is to be discontinued.—[Rev. Méd. Chir., from Med. Chir. Rev.

Treatment of Colica Pictorum. By J. H. Johnson, M. D., of St. Louis Hotel for Invalids.—In the first place, counteract by all possible
means the intestinal spasm; this is best done by large doses of proto.
chl. hyd. and opium, say from 30 to 50 grs. of the former combined
with from 2 to 5 grs. of the latter, to be repeated at least once in three
hours. In some cases opium may be given much oftener, as no
idiosyncrasy ever occurs in cases of colica pientum. In two hours
after the last dose of calomel and opium, give from 2 to 4 oz. of ol.
ricini combined with from 4 to 5 gtt. of ol. tigii. Generally, in a
few minutes, a copious and free evacuation will take place; if not,
then commence injections, not a pint, or a quart, nor a gallon, but
enough to distend the bowels. It sometimes may require a large
quantity of fluid—but continue; the object is, or should be distension
—nature then will perform her function. Many eminent practition-
ers prescribe injections for the purpose of softening the intestinal faecal
matter, and for increasing the peristaltic motion of the bowels. The
ture principle in colica pientum is to distend, and consequently to
remove the intestinal spasm.—[St. Louis Med. and Surg. Jour.

Tartrate of Iron and Potassium in Syphilis.—M. Ricord strongly
recommends the use of Tartrate of Iron and Potassium for the cure of
primary phagedenic syphilitic sores.

He advises much larger doses than are usually given, generally
commencing with three drachms per day, given in divided doses; and
gradually increasing it until the quantity reaches six drachms daily.
He says that the good effects of the medicine will often be apparent
in three or four days after commencing its use. But its administration
should be continued until cicatrization is complete. He also recom-
mends a solution of the same substance as a local application.
[Annalist.

New Mode of Reducing Dislocations of the Humerus.—Mr. Morgan
describes as follows, in the Provincial Journal, a mode for effecting the
above object, which he states to be found convenient and useful in the
practice of the Bristol Infirmary.—[London Lancet.

"Without any preliminary treatment, the patient is seated sideways
on a firm chair, with his arm hanging over the back, which is well
padded; one end of a double or reel-towel is passed through the other
end, so as to form a noose, which is applied to the arm just above the
elbow. The loose, depending part of the towel forms a stirrup, into
which the surgeon places his foot, and gradually brings his whole
weight to bear on the towel, as an extending power. One or two
assistants are useful to press back the acromion, and keep the patient
firmly in his seat. The reduction is effected almost immediately;
and if due precaution is observed in properly padding the chair, and
the arm where the towel is applied, little or no pain is felt, nor any
subsequent inconvenience from the pressure."
milk snuffed into the nostrils to promptly arrest epistaxis. It is said any practitioner can satisfy himself on the first occasion which may offer, of the efficacy of this new remedy.

Tincture of Iodine in Ophthalmia.—Dr. Landran, of Lyons, has obtained good results from the use of tinct. iodine in the internal ophthalmia, accompanied with effusion of purulent matter into the ant. chamber. He orders the eye to be bathed three times a day, with a collyrium composed of 12 drops of tr. iod. in oz. 2½ aq. dist. In five cases of acute oph., with iritis, and purulent effusion into the ant. chamber, this collyrium, used after antiphlogistic treatment, caused rapid absorption.—[Jl. de Med. de Lyons.

Medicinal Employment of Gutta Percha.—Gutta Percha being very soluble in sulphuret of carbon, and the latter not losing any of its great volatility by the combination, M. Uytterhoeven, head surgeon of St. John’s Hospital, in Brussels, is in the habit of spreading the mixture in its liquid state over parts which he is anxious to preserve from the action of air and water. Recently, an abscess resulting from caries of the ribs, after being emptied, was covered by a coat of this fluid, a small patch of court-plaster having previously been placed on the puncture. In this manner the inflammation of the parieties of the cyst was prevented, and the latter was emptied as often as accumulation of matter required. The same surgeon has employed the material prepared in the manner mentioned above, to prevent the entrance of air into an articulation laid open by a wound. There is no doubt that chloroform might advantageously replace the sulphuret of carbon.

[Lancet.

Iodide of Potassium, a Cure for Nurses’ Sore Mouth.—Dr. H. D. Holt states (New York Journ. of Med., May, 1848), that every case he has treated of this disease “has yielded within forty-eight hours to the use of iodide of potash in gr. v. doses three times a day.”—[Amer. Journ. of Med. Sciences.

MEDICAL INTELLIGENCE.

A Work on Medicine by Dr. Tomlinson Fort, of Milledgeville, Georgia.—Within the last few weeks, we have learned with much gratification, that Dr. Fort, of this State, was engaged in preparing a large octavo volume on the Practice of Medicine. In heralding this notice to the profession, we state the additional fact, that the author has kindly confided to us, nearly one half of the contemplated work—indeed, committed to us over 300 pages, to take such notice of them as we might think proper. We have accordingly selected the entire Article on the sources of Bilious Remittent Fever, and made it the leading one for the present No. of our Journal.

Intending to recur again to this new and praiseworthy enterprise of our professional Father in Medicine, we close our remarks here, by informing the
reader at a distance, that Dr. F. has represented this State in Congress, and has for forty years, occupied, in our opinion, the most prominent position of any man in the medical profession of Georgia.

The change of Editors in the New York Medical Journals.—The able Editor, Dr. CHARLES A. LEE, of the New York Journal of Medicine, has been compelled, from other more important engagements, to resign his post, and has been succeeded by Dr. W. D. PURPLE, of New York city.

The highly industrious Editor, Dr. W. C. ROBERTS, has also retired from the Annalist, and Dr. N. S. DAVIS, late of Binghampton, now of New York city, has assumed its editorial management.

We cannot let the occasion pass without expressing our deep regret at the retiring of these professional brothers from the editorial corps. We know we have lost two of its most able and valued members, who really seemed the very best qualified for the work they had undertaken. They carry with them into retirement our kindest feelings, and sincere wishes for a long, prosperous and honorable life.

We welcome their successors to the arduous duties before them, and hope to live in perfect harmony with both, whose interests we shall be happy to promote to the extent of our feeble abilities.

The Medical Examiner, on "sectional Medicine."—That which we have long expected has come at last. The ungenerous spirit with which the Medical Examiner, published in Philadelphia, has treated every thing medical, not of that city, or every one who does not pronounce the name of the Jefferson Medical College with all possible deference, there was no reason to believe we were always to escape. The illiberal attacks upon the New Orleans Medical and Surgical Journal, the South-Western Medical Advocate, the New-York Medical Intelligencer, the New-York Medical and Surgical Reporter, the Annalist, &c., &c., have long since admonished us to bide our time. The fact of our having been the pupil of one of the colleagues of its Editor, may be assigned as his apology for our escape until now.

The re-publication from the New-Orleans Med. & Surg. Jour. of the striking similarity of Twedie's Library of Medicine and Dr. Dunglison's Practice of Medicine; (we promptly published, too, Dr. D's defence, such as it was, addressed to the Editors of that Journal,) the admission into our Journal of another article, accusing Dr. Dunglison of appropriating Adelon's Physiology, without acknowledging the translation of it; the accusation of another Professor in the Jefferson Medical College, using a portion of Dr. Ford's lecture without proper credit; and the notice in our September No. of Medical College Circulars, have proven too much, it may be, presented too many facts, for the Editor of the Medical Examiner, and hence the occasion for one of his learned essays on "sectional medicine," to be found in his last (Oct.) No.

We did not write the notice of the College circulars. Knowing so well the temper and acerbity of the Medical Examiner, and desirous of avoiding even the appearance of giving offence, we would not have used the words complained of in brackets. Exceptions had been taken to the Jefferson College circular, but a call into the country prevented our preparing the notice. At our request, this was done by a friend who preferred to remain unknown. Believing it a
merited rebuke to a self-laudatory College, whose annual announcements have generally given offence—believing, too, the exposition in the parenthesis to be the true one, we voluntarily assumed the responsibility of the article and affixed to it the 'Edr.'

In noticing the illiberal feeling and garbled statements of the Editor of the Medical Examiner, we hope to avoid all personality, and in what we have to say, shall not forget he too belongs to the medical profession. In applying to us the term "Southern champion," "our Southern polemic," &c., he has the satisfaction to know they have failed to produce any effect. We are engaged in an honorable calling, and shall endeavor on all occasions and on every subject connected with it, to preserve self-respect and a proper regard for the honor and dignity of the medical profession. We are of the opinion, too, that the question about our cheeks burning, when the words complained of erroneously supposed to have been written by us, comes with bad grace from one, who never lets an occasion pass without attempting to injure the character and reputation of rival medical schools. What has been the course he has pursued, in noticing medical college circulars? In announcing the organization of the Medical College of Memphis, we read in the Medical Examiner, Feb. 1846—"New Medical Scoohs. A medical University (!) for teaching how to steam and give Lobelia and Number Six, has recently been chartered by the State of Alabama, and a new medical school at Memphis, by the State of Tennessee." May it not be asked, if there were any tinglings in the cheeks when this disgraceful association of a steam and lobelia establishment with a highly respectable medical institution, was made by him in one and the same sentence? But this blow aimed at that College, failed of its purpose, and in spite of his opposition to it, we are gratified in announcing the fact, that the success of the Memphis Medical College has already excelled the renowned Jefferson Medical College of Philadelphia.

Again: Sept., 1845, in announcing the reception of the annual circulars of Transylvania University, Lexington, Ky.; Richmond, Va.; Pennsylvania College, Philadelphia, (one of the rivals to Jefferson Medical College); University of New-York; Willoughby Medical College; Laporte University, Indiana;—he says, "In the midst of so much competition, it is gratifying to find in several of these publications the assurances of unexampled success. Each finds occasion for exultation—one in the numerous diseases, and scarcely less numerous deaths, which so bountifully supply its clinics and dissecting room, in consequence of being situated in a large city; another from the healthfulness and freedom from exposure to the temptations and vices of a large city, because it is a country school; a third felicitates itself on the presumed benefit of the Faculty being self-nominated and self-governed, and a fourth finds advantages in the peculiar institutions which surround it, and the opportunity afforded for learning sectional medicine, and perpetuating sectional feelings, &c., &c. In all, we discover no lack of the natural yearnings after success, whatever deficiency there may be evinced in some of the dignity which makes success honorable." The italics are all the editor's, and we leave the reader to make his own comments upon this article.

The circular of Rush Medical College, at Chicago, is thus noticed: "Additions to the means of illustration in the department of Chemistry are mentioned, and among the apparatus, a fine microscope!" The point and italics are used by the editor. But here again, he failed to injure the rising reputation of this infant medical institution: its last class numbered 142.
We take but one more notice of the manner in which medical college circulars are reviewed in the Examiner. It is of the annual announcement of the Medical Department of the University of New York—the dreaded rival of the Jefferson Medical College. In the November No., for 1846, it is said:

"We have rarely met with a circular from a medical school so little in accordance with our notions of good taste and good feeling as this, nor have we seen one that drew so largely upon the credulity of its readers. Not to go too much into particulars, we shall refer to only two or three examples.

"The title page is ornamented with a neat wood-engraving of a very fine building appropriated to the Academical department of the University, which, besides being a long way from that in which the Medical Lectures are given, is as unlike it as it is unlike any other building in the city—as unlike it as a granite fronted building with the lower story filled with shops, is unlike the handsome marble building figured in this publication.

"The language employed throughout this Announcement, it seems to us, is eminently hyperbolical. One object appears to run through all its pages, and in every paragraph—that of impressing the reader with the belief that the Medical Department of the University of New York is the great school of the country! Nay, the schools of Europe, as well as those of America, are brought into invidious comparison. In this, however, 'the Faculty would not arrogate to themselves superior talents or learning!' What then? 'A few years since, and New York was known only as the Commercial Emporium; her fame in Medicine had not travelled beyond the confines of her own state; and her Medical classes were insignificant in numbers, composed mostly of students residing in the vicinity of the city.' What then has made the wonderful change so complacently dwelt upon, if not the 'superior talents and learning' of the Faculty by whom this Announcement is issued? The city was there—the people, the hospitals, the dispensaries, a well organized medical school—every thing except the Medical Department of the University of New York!

"The ridiculous fustian about 'building up a national school worthy of the country and the age,' is truly laughable. Why should a school in the city of New York be national any more than in Philadelphia, Cincinnati, New Orleans, Boston or Baltimore, and why the school in the Stuyvesant Institute in Broadway, any more than that in Crosby-street? Such extravagant pretensions, bombast and self-laudation, are little calculated to gain the esteem and secure the confidence of the thinking public, and least of all, the medical public."

In closing this notice, the Editor remarks, "a liberal and frank policy is always the best in the end." Moral.—In his July No. for 1848, after stating that the University of New York, and Boston school, still adhere to the old system of four months, he announces the fact that in the Jefferson Medical College the lectures would commence on the 16th of October, thus adding three weeks to the usual term, and concludes the paragraph by stating, "Similar arrangements likewise exist at the University of Pennsylvania, in which the regular lectures will commence on the same day as in the Jefferson College." But not the least intimation is given when they terminate. "Similar arrangements likewise exist at the University of Pennsylvania," and the inference is irresistibly, that the lecture term must be the same in both Institutions. Will it be believed that the writer of this very sentence, knew at the time he wrote it that in the old school, (the University of Pennsylvania,) the lectures would continue an entire month (March) longer than in his College? Who now should exhibit the blushes of shame and confusion of face! Behold the liberal and frank policy of the Dean of Jefferson Medical College and Editor of the Medical Examiner.

In the very last catalogue of the Jefferson Medical College, may be found the names of about a dozen gentlemen who matriculated in the University the same session—i.e., attended the lectures of both schools at the same time. The University
says every name on her catalogue is authorized, but the Jefferson Med. College can not and does not vouch the same. No Institution of our country can attract students like this one, and for making up a large class it possesses wonderful and unrivalled facilities—putting even "remote Burmah" under contribution—

"causing representatives from Ireland, France, and from all quarters, to flock to this Institution!" And then to entice,—oh no, that is done in New York, invite is the word, to her halls, take the following, found in the November No. of the Medical Examiner for 1845. When the season of the year is considered, its disinterestedness will be at once apparent. "The Reports of the Board of Health, as well as the observation of the most extensive practitioners of medicine, show the present to be an extraordinary healthy season of Philadelphia. We hear of small-pox in some of the neighboring cities, but in this place we know of no contagious, epidemic, or other diseases of a serious character—nothing more than the ordinary occurrences, such as cold, accidents, &c. The season has been mild, and the autumn, thus far, more exempt from storms and foul weather than we have almost ever experienced." The italics here are ours. Is the Editor of the Med. Examiner and Dean of the Faculty of Jefferson Med. College satisfied on this subject, or does he desire further information as to the manner how classes are made up and counted there? It will give us no pleasure to do so, but if he insists, he can be accommodated.

It is moreover announced in this same Institution, that "to lecture may be regarded as synonymous with to read," and "every one, who attends but two lectures a day will not learn more of these particular subjects than others who are engaged with six." Such are some of the absurd doctrines put forth in order to oppose the present educational movements at improvement by the profession. It is known too, full well, that not two, but the average of four lectures daily are proposed. But besides six lectures a day in winter, their circular of 1846 stated that 1038 cases in the College Dispensary, 1041 in the Pennsylvania Hospital, 152 in Will's Hospital, 5576 in the Philadelphia Dispensary, &c., had been offered to her students—making thus over 70 cases daily for investigation and prescription. Six lectures, besides dissection, study, &c., and 70 cases each day, is going it pretty strong for even a Philadelphia Lawyer, and reminds us of the professor who lectured annually four months in four different and widely separated medical schools.

And now as to the challenge given us for discussion in the Examiner. The Editor has neither defined his position nor attacked ours. In his four printed pages he has talked at random, without point, employs contradictory arguments, avoids facts, and garbles our statements.

Our propositions are these: There are peculiar diseases to every locality of the globe—where a disease prevails, there it can be best investigated—there are peculiar diseases in the South and West, some among our Negroes, (see Dr. Drake's letter on this subject,) which ought to be best known, and consequently better taught at the South and West, than any where else. We have never denied that malarious diseases were unknown to the profession at the North, but as these diseases do exist here, modified by various circumstances, and seeing them is worth something, we prefer the medical education at the South for Southern practitioners of medicine—as we would, under like circumstances, prefer a Northern physician, were we sick at the North.

The idea then that a medical student can best be taught his profession in the
very locality in which he is destined to practice, ought not to be, is not, and never will be abandoned.

We presume these propositions will be received without comment—least of all from the Editor of the Medical Examiner. If not, out of his own mouth he can be condemned, for hear him—"The editors (Southern Med. and Surg. Journal) are well known as able teachers and writers, and long conversant with the diseases of the South, and we hope for the sake of the profession in all parts of the country, but more especially in the interesting region where they reside, that their present attempt will be successful." One of the present Professors of Jefferson Medical College went to Canada to study Cholera. Who for a moment supposes that Philadelphia, with all her advantages, possesses any thing special for studying the Plague, Cachexia Africana, the Cholera, Small-pox, Intermittent fever, Yellow fever, and many other affections that might be enumerated?

We have given the voluntary opinion of Prof. Holmes, of Boston, in reference to our malarious diseases; we present now those of another professor of the same name, formerly in the U. S. Army, but now of St. Louis. It is taken from the American Journal of the Med. Sciences of Philadelphia, published in 1846. Dr. R. S. Holmes says, "on my arrival in Florida, knowing nothing of Southern diseases from practice, and being stationed alone at a distant and unhealthy post, I learned the rules by experience alone, guided by which I have successfully administered quinine. I practiced on Northern precepts, annoying the patient without arresting the disease, by a continued succession of two grain pills; occasionally at long intervals checking the disease, by these means, but much more frequently vexed for weeks by continued sickness of the soldier. I rose finally to ten grains, and continued to give this quantity at once; I more frequently succeeded by this practice, but not yet to my satisfaction." * * *

Finally, he remarks, "I increased my minimum dose, for intermittent fever, to fifteen grains given at once." What now will be the surprise of the reader to learn, after all that Dr. Dunglison is said to have written on the subject of large doses of quinine; of his claims to having first thus recommended its use in this country; after the denial of the Editor of the Examiner that the South has any title whatever to the introduction of this article in its present mode of administration in paroxysmal diseases; after his violent attacks upon every Journal, lecture, &c., containing the least allusion to peculiar Southern diseases and practices, or "sectional medicine," as that term pleases him best, and the occupying of four pages in his October No. to prove every thing in Medicine belongs to, or is known in Philadelphia—we again ask, what must be the reader's astonishment to be told that the author of the quotation just made is a graduate of Jefferson Medical College and a native of Pennsylvania! The name of Prof. R. S. Holmes, M. D., may be seen in the catalogue of its graduating class for 1838, with Pa. for his State. Can a more overwhelming refutation be made on any subject? And yet this doctrine of peculiar diseases to peculiar locations, the Editor of the Medical Examiner calls "degrading," considers it absurd, unscientific, unprofessional. He has actually attributed the unfavorable state of the medical profession in this section of our country to the acquirement of medical education in the South and West, instead of the North. He admits some of us graduated at Northern schools, and therefore learn something; but when we return home, he denies we have any thing more to do than apply our "Northern precepts to Southern diseases." Our observations and experience are utterly worthless; to observe for ourselves, is to advocate "sectional medicine."
The extent of our "sectional medicine" is this: we believe that up to 1840—

it may be even to the present date—that Philadelphia has done more for the

medical science of our country, than all other cities of the United States put to-
gether; that the University of Pennsylvania has done more for the medical pro-
fession, than all other Colleges put together; that the house now known as Lea &
Blanchard has done more for medical literature, than all other publishers put
together. Will the sectional spirit (for Jefferson Med. College is not included)
of the Editor of the Examiner allow him to go as far?

Lest the inference may be made to our prejudice, we publicly state that up to
this time, we have never said, written or done any thing to bias a student against
the Jefferson Medical College. We have entertained the highest respect for her
Faculty, deplore the present position they have assumed, are now compelled to
condemn the spirit of their Dean, and desire no interruption to the personal
friendship of several of its members.

Prof. W. M. Boling, of Montgomery, Ala.—From the New Orleans Med. and
Surg. Journal, we learn that Dr. Boling has accepted the appointment to the
Chair of Materia Medica and Therapeutics in the Memphis Medical College.
We do not know how a better selection could have been made, and wish Dr. B.
every success in his new office and location.

METEOROLOGICAL OBSERVATIONS, for September, 1848, at Augusta,
Ga. Latitude 33° 27' north—Longitude 4° 32' west Wash. Altitude above
tide 52 feet.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>69 29-71-100</td>
<td>92 29-72-100</td>
<td>N. W.</td>
<td>Fair.</td>
</tr>
<tr>
<td>2</td>
<td>70 " 83-100</td>
<td>93 " 83-100</td>
<td>N. W.</td>
<td>Fair.</td>
</tr>
<tr>
<td>3</td>
<td>70 " 81-100</td>
<td>89 " 86-100</td>
<td>s. W.</td>
<td>Fair.</td>
</tr>
<tr>
<td>4</td>
<td>69 " 89-100</td>
<td>89 " 83-100</td>
<td>s. E.</td>
<td>Fair.</td>
</tr>
<tr>
<td>5</td>
<td>68 " 83-100</td>
<td>90 " 70-100</td>
<td>s. W.</td>
<td>Fair—light shower in afternoon.</td>
</tr>
<tr>
<td>6</td>
<td>67 " 82-100</td>
<td>82 " 79-100</td>
<td>s. W.</td>
<td>Cloudy—storm at 8 p.m., 1 inch.</td>
</tr>
<tr>
<td>7</td>
<td>66 " 87-100</td>
<td>66 " 89-100</td>
<td>N. E.</td>
<td>Cloudy—drizzle—breeze.</td>
</tr>
<tr>
<td>8</td>
<td>60 " 87-100</td>
<td>75 " 85-100</td>
<td>N.</td>
<td>Fair—breeze—rain last night, [10-100.</td>
</tr>
<tr>
<td>9</td>
<td>54 " 80-100</td>
<td>78 " 78-100</td>
<td>s. W.</td>
<td>Fair.</td>
</tr>
<tr>
<td>10</td>
<td>56 " 82-100</td>
<td>81 " 84-100</td>
<td>s.</td>
<td>Fair.</td>
</tr>
<tr>
<td>11</td>
<td>58 " 89-100</td>
<td>82 " 91-100</td>
<td>s. W.</td>
<td>Fair—breeze.</td>
</tr>
<tr>
<td>12</td>
<td>63 " 90-100</td>
<td>55 " 90-130</td>
<td>E.</td>
<td>Cloudy.</td>
</tr>
<tr>
<td>13</td>
<td>61 " 87-100</td>
<td>54 " 87-100</td>
<td>W.</td>
<td>Fair—some flying clouds.</td>
</tr>
<tr>
<td>14</td>
<td>68 " 89-100</td>
<td>83 " 86-100</td>
<td>s. W.</td>
<td>Fair—some clouds.</td>
</tr>
<tr>
<td>15</td>
<td>65 " 87-100</td>
<td>87 " 65-100</td>
<td>s. W.</td>
<td>Fair—light shower at 4 A.M.</td>
</tr>
<tr>
<td>16</td>
<td>63 " 61-100</td>
<td>82 " 59-100</td>
<td>s. W.</td>
<td>Fair—breeze.</td>
</tr>
<tr>
<td>17</td>
<td>61 " 64-100</td>
<td>79 " 60-100</td>
<td>s.</td>
<td>Fair—breeze.</td>
</tr>
<tr>
<td>18</td>
<td>55 " 76-100</td>
<td>80 " 80-100</td>
<td>s.</td>
<td>Fair—breeze.</td>
</tr>
<tr>
<td>19</td>
<td>56 " 83-100</td>
<td>82 " 83-100</td>
<td>s. W.</td>
<td>Somewhat cloudy.</td>
</tr>
<tr>
<td>20</td>
<td>59 " 76-100</td>
<td>81 " 70-100</td>
<td>s. W.</td>
<td>Cloudy—calm day.</td>
</tr>
<tr>
<td>21</td>
<td>65 " 66-100</td>
<td>78 " 64-100</td>
<td>N.</td>
<td>Fair—blow from 4 A.M. all day.</td>
</tr>
<tr>
<td>22</td>
<td>55 " 83-100</td>
<td>72 " 85-100</td>
<td>E.</td>
<td>Cloudy—breeze continues.</td>
</tr>
<tr>
<td>23</td>
<td>51 " 87-100</td>
<td>68 " 87-100</td>
<td>s. E.</td>
<td>Cloudy.</td>
</tr>
<tr>
<td>24</td>
<td>52 " 84-100</td>
<td>75 " 80-100</td>
<td>N. E.</td>
<td>Cloudy—breeze—blow.</td>
</tr>
<tr>
<td>25</td>
<td>58 " 71-100</td>
<td>74 " 62-100</td>
<td>N.</td>
<td>Fair—dry gale.</td>
</tr>
<tr>
<td>26</td>
<td>61 " 59-100</td>
<td>82 " 61-100</td>
<td>N.</td>
<td>Fair—breeze.</td>
</tr>
<tr>
<td>27</td>
<td>58 " 72-100</td>
<td>76 " 69-100</td>
<td>N. W.</td>
<td>Fair.</td>
</tr>
<tr>
<td>28</td>
<td>56 " 64-100</td>
<td>76 " 58-100</td>
<td>s. W.</td>
<td>Fair—breeze.</td>
</tr>
<tr>
<td>29</td>
<td>48 " 53-100</td>
<td>78 " 52-100</td>
<td>s.</td>
<td>Fair—breeze.</td>
</tr>
<tr>
<td>30</td>
<td>52 " 51-100</td>
<td>81 " 44-100</td>
<td>s.</td>
<td>Fair—rain storm at 6 P.M., 2 in.</td>
</tr>
</tbody>
</table>

21 Fair days. Quantity of Rain 3 inches 55-100. Wind East of N. and S.
6 days. West of do. do. 16 days.