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Theoretical studies suggest that the visual system uses prior knowledge of visual objects
to recognize them in visual clutter, and posit that the strategies for recognizing objects in
clutter may differ depending on whether or not the object was learned in clutter to begin
with. We tested this hypothesis using functional magnetic resonance imaging (fMRI) of
human subjects. We trained subjects to recognize naturalistic, yet novel objects in strong
or weak clutter. We then tested subjects’ recognition performance for both sets of objects
in strong clutter. We found many brain regions that were differentially responsive to objects
during object recognition depending on whether they were learned in strong or weak
clutter. In particular, the responses of the left fusiform gyrus (FG) reliably reflected, on
a trial-to-trial basis, subjects’ object recognition performance for objects learned in the
presence of strong clutter. These results indicate that the visual system does not use a
single, general-purpose mechanism to cope with clutter. Instead, there are two distinct
spatial patterns of activation whose responses are attributable not to the visual context in
which the objects were seen, but to the context in which the objects were learned.
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INTRODUCTION
The visual system has a remarkable ability to recognize an object,
despite the fact that we rarely see the same view of it twice
(Figure 1A). This ability rests on incompletely understood brain
mechanisms that discount sources of variation in the images of an
object and background. Discounting is necessary because images
of a single object will vary due to changes in viewpoint, light-
ing, material reflectance, occlusion, articulation, and background
(Kersten et al., 2004).

Background clutter can be particularly challenging to dis-
count, because object features (e.g., local texture patch, or bound-
ary curve segments) can be confusable with background features,
and they may not repeat in subsequent images of the same
object (Figure 1B). Recognizing an object in the presence of
background objects is also made harder by crowding effects that
arise when the objects are spaced too closely for a given eccen-
tricity (for overviews, see Motter and Simoni, 2007; Levi, 2008;
Pelli and Tillman, 2008). In principle, ambiguity from back-
ground clutter can be resolved through bottom-up processes
that use intermediate-level prior knowledge about how similar
local image measurements (e.g., texture, color, edge orientation,
and motion) tend to group (Stringer and Rolls, 2000, 2008), or
by learning to use diagnostic fragments (such as an “eye”; cf.
Ullman et al., 2002; Hegdé et al., 2008a). However, such bottom-
up components for recognition seem to be inadequate to deal
with the full range of image variation (Cavanagh, 1991; Yuille
and Kersten, 2006). Accurate and versatile recognition seems to

require analysis-by-synthesis, in which object knowledge in mem-
ory is used in a top-down fashion to resolve residual ambiguities
regarding which features belong to the object and which do not
(Figure 1B; also see Yuille and Kersten, 2006; Epshtein et al.,
2008).

The requirement for prior object knowledge for versatile
recognition and segmentation, however, brings an important
computational problem, referred to as the bootstrap learning
dilemma (Brady and Kersten, 2003)—how does the visual system
learn an object in the first place if the object to be learned is itself
ambiguous?

One possible solution is that the visual system takes advantage
of opportunities in which bottom-up cues are not ambiguous,
such as a view of the object in motion relative to the background,
at a different stereoscopic depth, or seen against a different
color—all conditions of weak clutter. In this case, a representa-
tion of the whole object could be stored from a single view, or as
needed, a representative collection of views, to allow for lighting
or viewpoint changes. This is referred to as “opportunistic learn-
ing,” because of how it may arise in natural conditions (Figure 1B;
Brady and Kersten, 2003).

What if low ambiguity opportunities are scarce, as in the case
of camouflage, occlusion, or in the absence of motion parallax,
i.e., conditions of strong clutter, where there may be insufficient
information in a given view to even localize the object? In the
absence of opportunities to see an object clearly, learning would
require accumulating object knowledge piecemeal over repeated
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FIGURE 1 | Effect of prior knowledge on object recognition in clutter.

(A) A novel image, i.e., a pattern of intensities whose pixel representation the
reader has never seen before. Yet, the toad is easily detected and
recognized as a familiar object. Local input information, such as might be
extracted by oriented spatial filters in V1 (simple or complex cells) used for
signaling local oriented edges, provide highly ambiguous information.
In typical natural images, there is no local information that uniquely
distinguishes which edges belong to the boundary of an object, and
which do not. (B) Different images of the same toad result in very different
feature patterns. For example, it can be impossible to learn to distinguish
which edge measurements near the boundary are from the toad vs. from the

background, because most are ambiguous and change drastically
from image to image. This variation illustrates the bootstrap learning
dilemma. If detection, recognition, and segmentation rely on prior
knowledge, how can this knowledge be acquired? Some images produce
less ambiguous local edge features than others (bottom right two images),
suggesting that object models may be learned given occasional low
ambiguity conditions (although toads are not comfortable with such
backgrounds). However, learning can also occur given views that are
individually highly ambiguous (represented by the kinds of image input in the
bottom right three images), but as a collection provide information to
construct an object model.

and possibly infrequent exposures. Delays between views result in
enormous image variations, as well as exposures to other objects
in between views. Thus, learning an object given large varia-
tions would require mechanisms capable of holding candidate
object features in memory obtained in one exposure for later
comparison with features in other views of the same or differ-
ent objects (for reviews, see Grill-Spector, 2003; Grill-Spector
and Malach, 2004; Bussey and Saksida, 2007; Seger and Miller,
2010; Ungerleider and Bell, 2011; Vann and Albasser, 2011). Some
features would need to be accepted and some rejected, until an
increasingly complete description of the object model (i.e., an
internal representation of an object) is assembled. Learning under
such conditions of ambiguous fragmentation is referred to as
bootstrapped learning (Brady and Kersten, 2003).

These computational considerations suggest the hypothesis
that substrates of object recognition in clutter may involve dif-
ferent sets of brain regions depending on the type of learning, i.e.,
on whether the object was learned in strong or weak clutter. To
test this hypothesis, we designed an imaging experiment in which
individual novel objects were learned under either conditions of
strong or weak clutter, but the recognition of both sets of objects
was tested under conditions of strong clutter.

MATERIALS AND METHODS
EXPERIMENTAL DESIGN
We designed our experiment with the following considerations:

1. In a study such as ours that tests object recognition as a func-
tion of the type of learning, it is important to isolate the effects
of learning from the potentially confounding effects of test-
ing. For this reason, we tested all objects under the same task
paradigm (i.e., object recognition in strong clutter), regardless
of whether the object was learned in strong or weak clutter.
(The amount of clutter, as measured by the average number of
objects, remained constant. For clarity, we use the terms “weak
clutter” and “strong clutter” to distinguish between weak and
strong effects of clutter on figure-ground separation).

2. For stimuli used in training in strong clutter, we used tex-
ture mapping to mimic the natural fragmentation effects of
lighting and pigment variation on both object boundaries
and internal regions. The texture patterns of the target object
had the same distribution of local features as the background
clutter, thus encouraging the building of object models to
solve the segmentation problem. The consequence was that
there was insufficient information in any individual image for

Frontiers in Human Neuroscience www.frontiersin.org June 2012 | Volume 6 | Article 170 | 2

http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Human_Neuroscience/archive


Hegdé et al. Object recognition in clutter

recognition or segmentation even with scrutiny. Preliminary
measurements confirmed that observers were at chance per-
formance prior to training (data not shown). In other words,
learning to recognize an object in strong clutter required the
visual system to integrate the object model information over
multiple exposures to the object.

3. To reflect natural object properties, we synthesized 3D stimu-
lus forms (“digital embryos”) using virtual morphogenesis to
capture realistic part relations, shading, and occlusion (Brady
and Kersten, 2003; Hegdé et al., 2008a; see Figure 2A).

4. Because of the potential for broadly different brain functions
to be involved in the two types of learning, we measured the
activity of the whole brain, and not just the visual areas.

This experimental design was aimed at ruling out stimu-
lus conditions that could otherwise lead to differential cortical
responses between objects learned under conditions of strong
vs. weak clutter. Systematic differences in the images, including
average luminance, the level and nature of clutter, color used to
highlight the target object in the sample images during train-
ing, and subject-to-subject differences in training parameters can
be ruled out, since these effects were either averaged out during

the experiment and/or factored out during the data analysis
(see below for details). Also, the target objects were counterbal-
anced among subjects, so as to average out the effects of the shape
variations across individual objects.

SUBJECTS
Eight adult right-handed subjects (four females and four males)
participated in this study. The data from one female subject were
excluded because of excessive head movement in the scanner. It
must be noted that this is a relatively small sample, and is there-
fore more subject to Type I and II errors (Cohen, 1988; Ellis,
2010). Each subject had normal or corrected-to-normal vision,
and had no known neurological or visual disorders. Subjects gave
informed consent prior to participating in the study. All protocols
used in the study were approved in advance by the Institutional
Review Board of the University of Minnesota.

STIMULI
Digital embryos were generated by starting with a uniform icosa-
hedron, and simulating three embryonic processes in an iterative
fashion: hormone-mediated cell growth, cell division and cell
movement (www.hegde.us/DigitalEmbryos). Because of random

FIGURE 2 | Stimuli and task. (A) Some exemplar novel objects (“digital
embryos”). (B) A weak-clutter stimulus, with the target object highlighted in
color so as to minimize the effect of clutter. (C) A strong-clutter stimulus, with
the target (same as the leftmost object in second row from top in panel A)
camouflaged against the background. A given subject learned a given object in
strong clutter or in weak clutter, but not both. Learned objects were

counterbalanced among subjects. (D) The recognition task performed by the
subjects during fMRI scans. The target object was always presented in the
presence of clutter during the scans, regardless of whether a given object was
learned with or without clutter during training. Subjects were required to report
whether the stimulus contained a learned target or not, regardless of the
location of the target. The panels in this figure are not drawn to the same scale.
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variations in the underlying developmental processes, each run
of these processes generates a different shape. Figure 2A shows
several examples. We generated >5000 different digital embryos
from which to select target objects and produce background
clutter. Each embryo was textured independently using a ran-
domly chosen two-tone grayscale bitmap of untextured digital
embryo scenes as texture maps. This process produces mislead-
ing occlusion and shading cues, similar to that employed by some
animals (e.g., cuttlefish; Hanlon et al., 2007). Digital embryo
scenes were created by compositing 81 different randomly drawn
embryos in 9 × 9 jittered rows and columns and at random
depths (see Figures 2B,C). This constituted the background. All
stimulus parameters, including the texture used for texture map-
ping and the number of background embryos, were chosen so
as to yield asymptotic learning within a few hundred trials, as
determined in pilot experiments (data not shown).

For scenes with a target, a new digital embryo was placed
in front of the background, so that the target was in “plain
view.” The embryos that were used as targets in any image never
occurred in the background in any image, and vice versa. The
scene was top lit and rendered using the OpenGL graphics toolkit
(www.opengl.org).

Four types of visual stimuli were generated. (1) For stimuli
with strong clutter, the target object was set against a background
of other digital embryos, so that the texture patterns of the indi-
vidual embryos created a camouflage effect (Figure 2C). That is,
the target object blended with the background, making it dif-
ficult to perceptually segment the target from the background.
Note that this type of clutter is distinct from the type of clut-
ter used in many previous studies, where the various objects in
the image did not blend with each other, so that each object
could be readily segmented from each other and from the back-
ground (see, e.g., Kourtzi et al., 2005). The position of the target
in the frontal plane, and the identity and position of the back-
ground embryos, varied randomly from one stimulus to the next.
(2) The stimuli with weak clutter were created using an identi-
cal procedure, except that the target embryo was highlighted in
monochromatic color (green or blue, depending on the subject)
so as to be easily seen (Figure 2C). (3) The no-target stimuli were
similar to the stimuli with strong/weak clutter, except that the
target was absent. Note that the generative process for produc-
ing the backgrounds for the aforementioned three conditions was
identical—statistically, the three conditions differed only in terms
of the target object. (4) In order to contrast responses to objects
learned in strong/weak clutter vs. a textured background, we also
created a set of scrambled control stimuli by sampling small rect-
angular image patches from individual stimuli chosen randomly
in equal proportions from the first three conditions.

TRAINING PHASE
During this phase of the experiment, subjects learned the tar-
get objects off-scanner, using viewing conditions that mimicked
those in the scanner as closely as possible. Each subject learned
five different objects presented in strong clutter, and five addi-
tional objects presented in weak clutter. The learned objects were
counterbalanced across subjects. Each subject learned objects
in strong or weak clutter in separate, alternating blocks of

trials. Within each block, matching vs. non-matching trials
(see below) occurred with equal probability in a randomly inter-
leaved fashion.

To learn the embryos, subjects performed a delayed match-
to-sample detection task with feedback, in which they reported
whether or not the foreground object in the sample stimulus
was found in the ensuing test stimulus (not shown). Briefly, each
trial lasted 2 s, and began with a 400 ms presentation of the sam-
ple stimulus. Each sample stimulus was a visual scene described
above and always contained a target object in the foreground.
Depending on the trial block, the sample stimulus was a strong-
or weak-clutter stimulus.

The sample stimulus was followed by a 100 ms mask drawn at
random from a pool of 100 pattern mask stimuli that were cre-
ated by scrambling a separate, dedicated set of strong-clutter and
weak-clutter stimuli (Grill-Spector et al., 2001; Op de Beeck et al.,
2007).

Following a 100 ms mask, the test stimulus was presented for
400 ms. The test stimulus was always a strong-clutter stimulus,
regardless of whether the preceding sample stimulus was a weak-
clutter stimulus or a strong-clutter stimulus. In a random 50% of
the trials (matching trials), the test stimulus had the same target
embryo as the sample stimulus, always at the same size and ori-
entation, but at a randomly varying location. In another 50% of
the trials, the test stimulus was a no-target stimulus. In either type
of trial, the background of the test stimulus was always different
from the background of the sample stimulus, so that the target,
if present, was the only object common between the given test
stimulus and the preceding sample stimulus.

Following a 100 ms mask, a blank screen was presented for the
remainder of the trial (1000 ms). The subject had to report, using
a corresponding button press, whether or not the foreground
object in the sample stimulus was present in the test stimulus
regardless of the object’s position in either stimulus. Eye move-
ments were allowed, so as to mimic natural viewing conditions as
closely as possible. An audio feedback was provided.

The strong-clutter and weak-clutter blocks were repeated until
the subject learned the corresponding class of objects to a crite-
rion level (at least 75% correct for all objects in the block for
at least four successive blocks). For some subjects, the learning
occurred over multiple days. Although individual subjects tended
to learn some objects faster than others, the asymptotic level of
performance, measured as the percentage of correct responses,
was comparable between objects learned in strong vs. weak clutter
(Table 1, top). Note that it is possible that there were system-
atic differences in eye movement and fixation patterns among
the various conditions, and that these differences contributed to
the differences in learning. Immediately before the scan, each
subject performed additional “top-off” training sessions out-
side the scanner, so as to ensure that the subject’s learning
remained at asymptotic levels entering the scanning phase of the
experiment.

TESTING PHASE: MRI SCANS
Subjects were scanned while performing an object detection task
under conditions of strong clutter, regardless of whether they had
learned the object under conditions of strong or weak clutter.
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Table 1 | Behavioral data.

Strong clutter Weak clutter No target

PRE-SCAN TRAINING

Asymptotic level performance (% correct ± SEM) 78 ± 2 80 ± 5

Number of pre-asymptotic training blocks Median 10 8

Range 8–14 7–12

DURING THE SCAN

Performance (% correct ± SEM) 78 ± 3 77 ± 4 85 ± 1

Reaction time (Mean ± SEM) (ms) Correct trials 826 ± 6 820 ± 5 870 ± 3

Incorrect trials 916 + 11 903 + 8 948 + 8

During the scan, each trial lasted for 2 s, and began with a
400 ms presentation of a single cluttered visual scene, followed
by a 100 ms mask and a subsequent blank gray screen for the
last 1500 ms of the trial (Figure 2D). Stimuli (9◦ × 9◦) were
back-projected via a video projector (refresh rate, 60 Hz) onto a
translucent screen placed inside the scanner bore. Subjects viewed
the stimuli through a mirror located above their eyes, and used
a button press to report whether or not the visual scene con-
tained an object they had learned. No feedback was provided. Eye
movements were allowed.

Functional MRI data were obtained using a 3T Siemens Trio
scanner with an eight-channel head array coil using a rapid
event-related design. Blood oxygenation level-dependent (BOLD)
signals were measured with an EPI sequence (TE: 30 ms, TR:
1000 ms, FOV: 220 × 220 mm2, matrix: 64 × 64, flip angle: 60◦,
slice thickness: 5 mm, inter-slice gap: 1 mm, number of slices:
14, slice orientation: axial). The bottom slice was positioned just
below the temporal lobes, so that the slices spanned all of the
brain except the crown of the motor cortex at the dorsal end.
A high-resolution 3D structural data set (3D MPRAGE; 1 × 1 ×
1 mm3 resolution) was also collected in the same session before
the functional runs.

Each scan consisted of 125 trials, representing four different
conditions. (1) Twenty-five trials, referred to as “strong clutter”
trials, featured an object learned under strong clutter. The objects
were repeated five trials each in a randomly interleaved fashion
(5 objects × 5 trials each = 25 trials). (2) The 25 “weak clutter”
trials featured an object learned under weak clutter. The strong
clutter and weak clutter trials were identical in all respects, includ-
ing the pattern of background, except for the way the target object
had been learned. (3) Two sets of 25 trials each (“no target” tri-
als), one each corresponding to strong clutter and weak clutter
conditions, featured a no-target stimulus. This ensured that the
stimulus in any given trial had a 50% chance of containing a
target. The two sets of no-target trials (defined for m-sequence
purposes, see below) were otherwise identical. (4) The remaining
25 trials featured scrambled stimulus (“scrambled control” trials),
during which subjects were expected to press either button.

The order of the various trials was determined using an
m-sequence (Buracas and Boynton, 2002), so that each condi-
tion was preceded and followed by each of the other conditions
an equal number of times. The m-sequence was varied one scan
to the next within a subject. Each subject was scanned eight times.
The recognition performance did not change systematically over

the scan for any subject, indicating that the subjects did not learn
(or forget) during the scan (rank correlation analysis, p > 0.05
for each subject; not shown).

DATA ANALYSES
The data were analyzed using the SPM5 (www.fil.ion.ucl.ac.uk/
spm; Friston, 2007) and BrainVoyager (brainvoyager.com) util-
ities, along with custom-written software. The EPI data were
corrected for slice time and head movement, normalized to the
MNI/ICBM coordinate space (www.loni.ucla.edu/ICBM; Evans
et al., 1993) and smoothed using a Gaussian kernel with a full
width at half maximum of 8 mm.

Statistical maps were generated in two stages. The first stage
was a within-subject analysis, during which statistical maps were
generated for each subject individually using 13 different regres-
sors. The effects of interest were modeled using one regressor
for each of the four trial conditions (strong clutter, weak clut-
ter, no target, scrambled control). The model also included the
following nine effects of no interest (i.e., “nuisance” factors):
translations and rotations of the subject’s head along the three
Cartesian axes (six regressors), the reaction times during the scan,
the number of trials needed to reach the asymptotic level dur-
ing the training phase prior to the scan, and the asymptotic
level of learning achieved during the training phase. The last
two regressors, which related to the off-scanner learning history
rather than in-scanner parameters, were included to factor out
the effects, if any, of the corresponding differences in off-scanner
learning. In general, including nuisance factors as regressors in
the model helps remove systematic, confounding contributions
from them. Removing such contributions from the data is desir-
able, even if the contribution of any given factor may not have
been statistically significant by itself (Friston, 2007).

The second stage of analysis consisted of an across-subject ran-
dom effects analysis, in which a group level statistical map was
generated using the statistical maps from individual subjects.

Foci of activation that consisted of ≥20 contiguous voxels at
a p < 0.05 (corrected for multiple comparisons) in the across-
subject map were identified as regions of interest (ROIs). A
separate analysis (not shown) revealed no clusters of signifi-
cant activation for the nuisance factors. Activation maps were
graphically displayed, and the Brodmann area assignments for
the activation foci were identified, using SPM5 and the Caret
utility (brainmap.wustl.edu/caret; Van Essen et al., 2001). Data
from individual ROIs were analyzed using the MarsBaR utility
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(marsbar.sourceforge.net; Brett et al., 2002) and custom-written
software.

ESTIMATING THE BOLD RESPONSES
BOLD responses used as inputs to various analyses were esti-
mated using one of the following two methods, depending on the
requirements of the given analysis.

Method 1 (Condition-wise method) estimated the response to
each of the four conditions during each individual scan using a
general linear model (GLM). To avoid potential selection biases,
only half of the scans from each subject was used as input to GLM
(Kriegeskorte et al., 2009; also see Baker et al., 2007a,b; Hegdé
et al., 2008b). The other half of the data for each subject was
used to redefine the ROI for each subject individually. To do this,
we determined significant voxels (at p < 10−4, uncorrected) in
each subject that were within a 16 mm diameter spherical volume
centered on the peak voxel for the given ROI in the aforemen-
tioned second level analysis. The responses of these voxels (but
in the other half of the data) were used as input to the GLM.
The GLM estimated the response to the given condition across
all repetitions (i.e., trials) of the condition during a given scan.
The response time courses were estimated using either the canon-
ical hemodynamic response function (HRF) or finite impulse
response function (FIR). FIR makes no assumptions about the
shape of the time course and essentially models each time point
of the scan individually (Friston, 2007).

Method 2 (Trial-wise method) was carried out in the same fash-
ion as Method 1, except that the response to each given trial
was estimated individually using deconvolution (Ollinger et al.,
2001a,b; Serences, 2004).

LOGISTIC REGRESSION
Two binary logistic models were constructed, one for objects
learned in strong clutter and the other for objects learned in weak
clutter. The aim was to determine the extent to which the BOLD
responses of given region could reliably signal the presence of a
learned target. The BOLD responses used as inputs to the model
were estimated using the Condition-wise method (Method 1)
described above.

The model for objects learned in strong clutter compared the
responses during the strong clutter trials with the responses dur-
ing the corresponding no-target trials (i.e., no-target conditions
designated as paired with strong-clutter trials in the m-sequence;
see above) across all subjects. The probability that a given trial
j featured stimulus S = g given the BOLD response Xi from the
brain region i is specified by the model:

P(S = g|Xij) = 1/
{

1 + exp[−(α +
∑

βiXij)]
}

where g ∈ {strong clutter, no target}, α is the offset and βi is the
regression coefficient for brain region i. The modeling was imple-
mented using the Design library (Harrell, 2001) in the R software
package (www.r-project.org) and custom-written R software. The
full model was then refined to retain only those regressors (i.e.,
regions) that contributed significantly to the model fit at p < 0.05
(Hosmer and Lemeshow, 2000; Harrell, 2001; Kleinbaum et al.,
2002).

The model for objects learned in weak clutter was similarly
constructed, using the data from weak clutter conditions and the
corresponding paired no-target conditions.

ROC ANALYSIS
Receiver operating characteristic (ROC) analysis was carried out
separately for strong clutter vs. weak clutter conditions and for
each subject essentially as described by Murray et al. (2002). The
goal of this analysis was to determine the extent to which the
BOLD responses in a given region were diagnostic of the sub-
ject’s response during either clutter condition. For analyses of this
sort where the diagnosticity of a given marker (or classifier) is of
greater interest than the nature of the marker itself, ROC analysis
is a principled, although by no means the only available, choice
(Reddy et al., 2006; Zhang et al., 2008; Diana et al., 2010; Sela
et al., 2011; Wee et al., 2012).

To determine if the BOLD responses during strong clutter tri-
als reflect the subject’s behavioral response, the FIR estimates
of BOLD responses during individual trials (Method 2 above)
for the strong clutter condition were pooled across the rele-
vant scans within each subject. The BOLD response during each
given strong clutter trial was classified as a hit or false alarm
using a simple decision rule. The rule tested whether BOLD
responses within a 4–10 s time window (where 0 s is the trial
onset) were all above a given criterion level. If the decision rule
correctly reflected the subject’s behavioral response during that
trial, the trial was considered a hit. If the rule did not, the
trial was considered a false alarm. The ROC curve was deter-
mined using 100 criterion values spaced uniformly within the
range of observed BOLD values. The area under the ROC curve,
AUC, was determined using numerical integration. The p-value
of AUC was determined using 1000 rounds of randomization.
The ROC analysis was carried out similarly for the weak clutter
condition.

RESULTS
Our experiment essentially consisted of training the subjects
off-scanner under conditions of strong or weak clutter depend-
ing on the object, and scanning the BOLD responses to all
objects presented under the same condition, i.e., of strong clutter
(Figure 2D; Materials and Methods for details). Thus, the clutter
designations (i.e., strong clutter or weak clutter) refer to the level
of clutter in which a given object was seen during the training
phase, and not to the level of clutter in which it was seen during
the testing phase.

BEHAVIORAL PERFORMANCE DURING TRAINING AND TESTING
As expected, without learning, object recognition performance
was at chance levels (not shown). After learning, the asymptotic
level of learning varied significantly across subjects (Two-Way
ANOVA, object type × subject; p < 0.05; not shown). However,
the asymptotic level of learning for objects learned in strong vs.
weak clutter was statistically indistinguishable from each other
within each subject (Table 1, top; binomial proportions tests,
p > 0.05). The number of blocks needed to reach asymptotic level
of learning was also statistically indistinguishable between the two
conditions (p > 0.05).
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During the testing phase, the recognition performance for
the objects learned in strong vs. weak clutter (Table 1, bottom)
was statistically indistinguishable from each other and from the
asymptotic performance during training (Mantel–Haenszel test
of independence, p > 0.05). The reaction times did not differ
significantly between objects learned in strong vs. weak clutter
(Two-Way ANOVA, learning type × reaction time; p > 0.05 for
learning type and interaction factors), indicating that any sys-
tematic eye movement differences between the conditions were
unlikely. However, the reaction times were faster for correct
responses than for incorrect responses (p < 0.05 for reaction time
factor).

BRAIN REGIONS DIFFERENTIALLY ACTIVE DURING THE DETECTION
OF OBJECTS LEARNED IN STRONG vs. WEAK CLUTTER
Our analyses revealed brain regions that responded differentially
to objects learned in strong vs. weak clutter across all subjects
regardless of the trial outcome (“Materials and Methods”). Since
all objects were seen under the same conditions of clutter during
the scanning itself, these differential responses are attributable to
how the objects were learned.

Twelve regions in either hemisphere showed significant acti-
vation differences. Of these, five regions were more responsive to
objects learned in strong clutter than to objects learned in weak
clutter, and seven regions were more responsive to objects learned
in weak clutter than to objects learned in strong clutter (p < 0.05,
corrected; Figure 3 and Table 2).

Regions significantly more responsive to objects learned in
strong clutter than to objects learned in weak clutter were found
in the fusiform cortex, dorsal precuneus, medial occipital cortex,
and basal ganglia [especially the posterior aspect of the head of
the caudate nucleus (CN), and the medial aspect of the internal
segment of globus pallidus (GPi)] (Figure 3A; also see Table 2A).
Regions with the opposite response pattern (i.e., weak clutter >

strong clutter) were found in the bilateral parahippocampal cor-
tex (PHC), bilateral dorsomedial frontal cortex (DMPFC), right
precentral, right superior temporal (ST), and insular cortices
(Figure 3B and Table 2B). CN, GPi, and the fusiform gyrus (FG)
are part of a memory subsystem called the corticostriatal loop.
PHC is part of another memory subsystem based in the medial
temporal lobe (MTL). Both of these memory subsystems are
known to be involved in object category learning and object
recognition (Poldrack et al., 2001; Seger, 2006; Murray et al., 2007;
Poldrack and Foerde, 2008; Baxter, 2009; Suzuki and Baxter, 2009;
Seger and Miller, 2010). We will discuss later the plausible roles of
these subsystems in recognizing objects learned in strong vs. weak
clutter.

Note that ROIs identified by either of the above contrasts
showed some hemispheric asymmetry. A previous study of learn-
ing in clutter did not find any differences between the two hemi-
spheres [(Kourtzi et al., 2005), p. 1324]. Additional analyses in our
case indicated that even ROIs in seemingly symmetrical locations
in the two hemispheres sometimes had substantially different
response patterns (e.g., the right and left FG; also see below).
The only exception to this were the four ROIs located on or
near the hemispheric midline (DMPFC, dorsal precuneus, medial
occipital cortex, and CN/GPi; Figure 3 and Table 2), which failed

to show significant variations across the two hemispheres and
therefore were not split according to hemisphere.

The differential activation in the retinotopic medial occipital
cortex is somewhat surprising, since our paradigm allowed free
eye movements. The time course of the BOLD response in this
ROI indicates that the visual stimulation reduced responses in this
ROI below background levels, such that at their most suppressed,
the responses showed a no target < strong clutter < weak clutter
< scrambled control pattern (see Figure A1). Response suppres-
sion in the occipito-temporal visual areas is believed to reflect the
fine-tuning (i.e., sharpening) of the responses induced by prior
object knowledge although there is some debate about the pre-
cise mechanisms (Murray et al., 2002; Ganel et al., 2006; Schacter
et al., 2007; Yotsumoto et al., 2008).

Involvement of retinotopic visual areas and of fusiform cortex
in learning objects in visual clutter has been reported previously
(Kourtzi et al., 2005; Zhang and Kourtzi, 2010). The anatomical
location of the PHC activation in this study roughly corresponded
to that of the parahippocampal place area that has been previously
reported to play an important role in scene perception, although
not in the context of visual clutter (Epstein and Kanwisher, 1998;
Epstein et al., 1999; also see Grill-Spector and Malach, 2004).
None of the remaining regions identified in the present study have
been previously reported to play a role in object recognition in
clutter (see below).

ROLE OF THE ROIs IN RECOGNIZING OBJECTS LEARNED IN
STRONG vs. WEAK CLUTTER
The fact that a given brain region is more responsive to objects
learned in strong clutter does not, by itself, mean that it plays
no role in representing objects learned in weak clutter (or vice
versa). For instance, it is possible that the two classes of objects
are represented in a distributed fashion, with one or more regions
contributing significantly to recognizing both classes of objects in
clutter.

We examined this possibility using logistic regression model-
ing to compare the BOLD responses to strong/weak clutter con-
ditions with the responses to the no target conditions (“Materials
and Methods”). For the strong clutter vs. no target comparison,
the slope of the fitted logistic function is a measure of the extent
to which a given region is more responsive to a stimulus that con-
tained an object learned in strong clutter than to a comparable
stimulus that contained no target (Hosmer and Lemeshow, 2000;
Harrell, 2001; Kleinbaum et al., 2002). By this measure, DMPFC,
right PHC, CN/GPi, and left FG reliably signaled the presence in a
cluttered background of an object learned in strong clutter (green
and yellow rows in Table 2; see footnotes for additional details).
Similarly, DMPFC, left and right PHC, and STS reliably signaled
the presence of an object learned in weak clutter (red and yel-
low rows). Two regions, DMPFC and the right PHC, signaled the
presence of a target object in cluttered background regardless of
whether the object was learned in strong or weak clutter (yellow
rows). Taken together, these results indicate that the two sets of
objects are represented in two partially overlapping, distributed
sets of brain regions.

To determine the extent to which the different brain regions
reflect the subject’s behavioral responses, we correlated the
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Table 2 | Brain regions involved in object recognition in clutter.

Table 2A | Learned in strong clutter > Learned in weak clutter (p < 0.05, corrected).

ROI¶ Hemi-sphere Brod-mann area x† y† z† Correlation with performance§

Strong clutter Weak clutter No target

1 2 3 4 5 6 7 8 9

Dorsal Precuneus L&R‡ BA7/31 3 −75 38 0.10 0.23∗ −0.38∗

Medial Occipital L&R‡ BA17/18/19 0 −92 28 −0.23∗ 0.05 −0.50∗∗

Caudate Nucleus (CN)/Globus
Pallidus Internal Segment (GPi)

L&R‡ (unassigned) 2 0 3 0.00 −0.40∗ −0.08

Fusiform Gyrus (FG) L BA37 −54 −51 −21 0.48∗∗ 0.15 −0.20

Fusiform Gyrus (FG) R BA37 57 −57 −18 0.53∗∗ 0.06 0.04

Table 2B | Learned in weak clutter > Learned in strong clutter (p < 0.05, corrected).

ROI¶ Hemi-sphere Brod-mann area x† y† z† Correlation with performance§

Strong clutter Weak clutter No target

1 2 3 4 5 6 7 8 9

Dorsomedial Prefrontal
(DMPFC)

L&R‡ BA32 −15 45 33 0.18 −0.01 0.50∗∗

Parahippocampal Cortex (PHC) L BA20/BA37 −30 −42 −12 −0.03 0.05 −0.01

Anterior Insula L (unassigned) −39 0 6 −0.31∗ 0.25∗ −0.28∗

Parahippocampal Cortex (PHC) R BA20/BA37 27 −39 −15 −0.12 0.02 0.24∗

Precentral R BA4/6 39 −3 42 −0.08 −0.28∗ −0.26∗

Superior Temporal (ST) R BA39/BA22 48 −33 9 −0.48∗∗ 0.05 −0.31∗

Posterior Insula R BA42 48 −48 15 0.11 0.05 −0.03

¶ROIs highlighted in green, red, or yellow denoted brain regions whose activity correlated with the recognition of objects learned in strong clutter, objects learned in

weak clutter, or both types of objects, as determined by logistic regression at the level of stimulus types. The BOLD responses used in the models were estimated

using the Condition-wise method (Method 1; Materials and Methods). This analysis was separate from the behavioral level analyses shown in columns 7–9. See

text for details.
†The stereotactic coordinates represent the center of mass of the given ROI in the MNI space.
‡ROIs that were contiguous because they were on the medial wall of the hemispheres were treated as a single ROI, i.e., the voxels were not partitioned into two

hemispheres.
§The numbers represent the correlation coefficient r between the estimated BOLD response of a given ROI to a given condition during each scan and the correspond-

ing behavioral performance of the subject (measured as % correct trials). The BOLD responses during a given condition were estimated using the Condition-wise

method (Method 1; Materials and Methods).
∗p < 0.05(df = 54); ∗∗p < 0.001(df = 54).

BOLD response of a given ROI to the strong clutter, weak clut-
ter and no target conditions with the subject’s overall behav-
ioral performance during the given condition. The resulting
correlation coefficient values are shown in Table 2 (columns
7–9; see footnotes for additional details). The time courses of
the BOLD responses for the six ROIs in Table 2 with signif-
icant correlations (i.e., ROIs highlighted in color) are shown
in Figure A2.

Three aspects of these two analyses are particularly note-
worthy. First, many ROIs (e.g., ST, FG) showed significant cor-
relation with performance either for objects learned in strong
clutter or in weak clutter, but not for both, indicating that these
ROIs process the two types of stimuli in a qualitatively differ-
ent manner. This is particularly important, because it indicates
that the responses are not entirely attributable to the internal
object model (or representation) being more detailed or better

segmented for the two types of objects because in that case,
the responses would be expected to vary systematically between
the two conditions. Second, note that the BOLD response was
anticorrelated with performance for many regions (e.g., anterior
insula, precentral, medial occipital), indicating that the BOLD
response of these regions to a given condition decreased with
an increase in performance. Third, although the response to the
no-target condition played no part in ROI selection in either
analysis (and the subjects did not explicitly learn no-target stim-
uli during training; see “Materials and Methods”), the response
to no-target stimuli showed significant correlation with per-
formance for many ROIs. This suggests that these ROIs carry
information about the presence or absence of a target in a given
cluttered scene. Together, the above results suggest that objects
seen in clutter are processed by the visual system in a distributed
fashion.
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RESPONSES OF LEFT FG IS DIAGNOSTIC OF CORRECT DETECTION OF
OBJECTS LEARNED IN STRONG CLUTTER ON A TRIAL-TO-TRIAL BASIS
The above analyses reveal many regions for which the average
magnitude of the BOLD response during a given condition was
correlated with the average behavioral performance of the sub-
ject on a scan-to-scan basis. We further examined all regions,
regardless of whether they showed significant correlation in the
above scan-level analysis, individually using an ROC analysis to
determine the accuracy with which the BOLD response estimated
the subject’s response on a trial-to-trial basis (“Materials and
Methods”). By this analysis, the responses in one ROI, left FG,
reflected a given subject’s behavioral response during individual
trials featuring an object learned in strong clutter (see below).

Figure 4 shows the results of this analysis for one represen-
tative subject. The extent to which the ROC curve (blue line)
deviated from the chance level performance (diagonal) is a mea-
sure of the accuracy with which the BOLD response successfully
estimated the subject’s response. Greater overall deviations, i.e.,
the extent to which the area under the ROC curve (AUC) devi-
ates from 0.5, signify correspondingly greater accuracy. The AUC
values were statistically significant in subjects 1–6 (AUC range,
0.57–0.63; p < 0.05). In the remaining subject (Subject 7), the
p-value was 0.058 (AUC, 0.5812; not shown). Together, these

results indicate that, in general, the BOLD response during a given
trial in left FG reliably estimates the subject’s behavioral response
for that trial.

However, the responses in left FG failed to estimate the sub-
ject’s response during the weak clutter condition, consistently
across all subjects. Furthermore, no other ROI consistently esti-
mated the behavioral response of the subjects during strong-
clutter or weak clutter conditions on a trial-to-trial basis by this
measure. This may mean that the processing of the objects learned
in weak clutter is even more distributed than the processing of
objects learned in strong clutter.

ADDITIONAL EVIDENCE FOR OVERLAPPING STREAMS OF PROCESSING:
BRAIN REGIONS RESPONSIVE TO BOTH TYPES OF OBJECT
The ROIs in Figure 3 were specifically identified by their differ-
ential responses to strong- vs. weak-clutter conditions. However,
it is also useful to identify ROIs that distinguish both condi-
tions from the scrambled control regardless of whether they
distinguish between the strong- vs. weak-clutter condition. To
do this, we identified those regions in which the responses to
both strong clutter and weak clutter conditions were greater than
to the scrambled control condition using a conjunction analysis
(strong clutter > scrambled control and weak clutter > scrambled

FIGURE 3 | Brain regions differentially responsive to visual objects

learned with vs. without clutter. Activations are shown superimposed on
axial slices of a standard individual brain template. (A) Regions more
responsive to objects learned in strong clutter than to objects learned
in weak clutter. (B) Regions more responsive to objects learned in
weak clutter than to objects learned in strong clutter. BOLD responses to

both classes of objects were measured in the presence of visual clutter.
Abbreviations: Ant/post. Insula, anterior/posterior insular cortex; CN,
caudate nucleus; DMPFC, dorsomedial prefrontal cortex; GPi,
internal segment of globus pallidus; FG, fusiform gyrus; Med.
Occipital, medial occipital; PHC, parahippocampal cortex; ST, superior
temporal.
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control; Figure 5 (Joseph et al., 2002; Friston, 2007). We used the
scrambled control condition, rather than the no target condition,
as the reference condition because our aim was to identify regions
that play a role in the processing of cluttered scenes, and not just
the target object.

The regions revealed by this analysis were largely symmetri-
cal between the two hemispheres, although significant activation

FIGURE 4 | Responses in left FG estimate the subject’s response on a

trial-by-trial basis. ROC analyses of trial-by-trial responses were carried
out using the BOLD responses to individual trials estimated using FIR
modeling in Method 2 (see “Materials and Methods” for details). This
figure shows the ROC curve (blue), the area under the ROC curve (AUC)
and the p-value of AUC for one subject. The diagonal represents chance
level performance (AUC = 0.5). The data from the remaining subjects are
reported in the text. The average time course of the responses in FG across
all sessions and subjects are shown in Figure A2.

of lateral occipital complex (LOC) and inferior occipital gyrus
(IOG) was evident only in the right hemisphere. In the left hemi-
sphere, the activation of these regions was not extensive enough
to be identified as an ROI by our criteria (data not shown). Both
LOC and IOG, especially in the right hemisphere, are known to
play key roles in object recognition (Grill-Spector and Malach,
2004). Two other regions in this map, anterior insula and dorso-
medial cingulate, have been previously reported to play important
roles in executive control (Stuss and Knight, 2002; Koechlin and
Hyafil, 2007). Thalamus is known to play a generic role in many
forms of perceptual learning (Seger, 2006).

DISCUSSION
FUNCTIONAL SPECIALIZATION IN THE SUBSTRATES FOR
OBJECT RECOGNITION IN CLUTTER
Our results reveal that recognition of visual objects in clut-
ter involves distinct, albeit overlapping, sets of brain regions.
Moreover, the differences in the two sets of regions were not
attributable to differences in object category, since these objects
were randomly drawn from the same object category and
counter-rotated across subjects. Rather, the differences were a
function of whether or not the objects were learned in clutter.
Thus, our results confirm the hypothesis that the differences in
the underlying substrates can arise as a function of the type of
learning.

These findings are consistent with the computational notion
that learning an object in strong vs. weak clutter results in differ-
ent processing mechanisms possibly involving different learned
object representations. As noted above, object features that are
useful for detecting an object differ when the object is learned in
strong clutter vs. weak clutter. Modeling studies show that neu-
ral networks learn different properties of the image when the
input images contain background clutter vs. when they do not
(Stringer and Rolls, 2000; Rolls et al., 2008). Psychophysical stud-
ies using dot patterns have shown that training on shapes in
isolation did not later facilitate segmentation of the same shapes
in noisy backgrounds (Yi et al., 2006). Thus, it is plausible that
two different corresponding sets of “task-relevant” features come

FIGURE 5 | Brain regions that are more responsive to objects in cluttered

scenes than to their scrambled counterparts. Two separate statistical
maps were generated, one using the strong clutter condition > scrambled
control condition, and the other using the weak clutter condition > scrambled
control condition, each at p < 0.05 (corrected). This figure shows the regions

that were significantly activated in both statistical maps by a conjunction
analysis (p < 0.05). Activations are shown superimposed on axial slices of a
standard individual brain template. Abbreviations: IOG, inferior occipital gyrus;
IPS, intraparietal sulcus; LOC, lateral occipital complex; VLPFC, ventrolateral
prefrontal cortex.
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to be represented, and the brain regions that help represent these
features will be correspondingly different. The differential activa-
tions revealed by our study may reflect these differences in how
the two sets of features come to be represented after training in
strong vs. weak clutter.

Our results identify left FG as a brain region that plays a key
role in the recognition of objects learned in strong clutter, in that
activity of this one region by itself is a reasonably good indica-
tor of the outcome of the recognition process on a trial-to-trial
basis. On the other hand, our results also indicate that the mech-
anisms for recognizing objects learned in weak clutter may be
more distributed. Previous monkey neurophysiological studies
have reported neurons in the inferotemporal cortex that show
considerable tolerance to clutter (Zoccolan et al., 2007; Li et al.,
2009; also see Levi, 2008; Nandy and Tjan, 2008), although the
extent to which type of learning, or learning per se, affects the
responses of these neurons remains unclear.

Three caveats about our results are especially worth noting.
First, while our results reveal many brain regions that show
differential learning type-dependent effects, it is possible that
our study missed additional brain regions that play key roles
in this process, because of the relatively low spatial resolution
of fMRI and/or the relatively small size of our sample. Second,
while our results generally designate each given brain region as
being selective to one condition or the other (e.g., left FG as
selective to strong clutter condition), it is possible that selec-
tivity for both conditions exist within the same given region
at the level of individual neurons or neuronal subpopulations.
Techniques with far greater spatial resolution, such as mon-
key electrophysiological recordings, would be needed to explore
this scenario. Third, the extent to which our findings are gen-
eralizable to other learning situations, especially under natural
viewing conditions, remains to be seen. Thus, the significance
of our results is that they provide an “existence-proof” for a
learning type-dependent object recognition process, and not nec-
essarily that it is a common mechanism of object learning and
recognition.

A HYPOTHETICAL MECHANISM BY WHICH FUNCTIONAL
SPECIALIZATION MAY ARISE IN A LEARNING TYPE-DEPENDENT
FASHION
Our experiments were not designed to address the mechanisms
by which brain regions come to be differentially responsive to the
objects learned in strong vs. weak clutter. But it is worth point-
ing out the possibility that the differential responses may arise as
a result of the interplay between two known memory subsystems,
the MTL and the corticostriatal loop.

Both of these subsystems are known to play prominent roles
in perceptual learning of visual objects (for reviews, see Seger,
2006; also see Poldrack et al., 2001; Poldrack and Foerde, 2008;
Seger and Miller, 2010). Previous human and monkey studies
indicate these two systems play different, somewhat comple-
mentary roles in visual learning: MTL is important for learning
easy visual discriminations, whereas the corticostriatal loop is
necessary for learning more difficult and gradually learned dis-
crimination tasks (Teng et al., 2000; Poldrack et al., 2001, 2005;

Seger, 2006). The involvement of the two subsystems is known to
change dynamically over the course of learning (Poldrack et al.,
2001; Voermans et al., 2004; Nomura and Reber, 2008; Daniel
et al., 2011). In general, as object uncertainty decreases during the
course of learning, the striatal loop becomes less active and MTL
becomes more active (Teng et al., 2000; Daniel et al., 2011).

We posit that the corticostriatal loop plays a comparatively
more prominent role than the MTL in object learning in strong
clutter, and the reverse is true for the learning of objects in weak
clutter, so that they come to preferentially represent the two sets of
objects. The differential responses observed using identical test-
ing conditions may reflect a differential engagement of these two
subsystems and of other brain regions with close functional con-
nections with either subsystem. Conversely, the regions activated
by both sets of objects presumably reflect overlapping roles played
by the two subsystems.

GENERAL IMPLICATIONS FOR NEURAL MECHANISMS OF
KNOWLEDGE-BASED VISUAL DISAMBIGUATION
Previous studies of the processes by which prior learning and
knowledge of objects help resolve image ambiguities have shown
that the underlying pattern of activity can differ based on whether
the subject has learned to recognize a given object or not, based on
the category of the given object or its visual context (Dolan et al.,
1997; Moore and Engel, 2001; Gauthier et al., 2003; Grill-Spector
and Malach, 2004; Kourtzi et al., 2005; McKeeff and Tong, 2007;
Wong et al., 2009; Brascamp et al., 2010). More directly relevant
to the present context, Kourtzi et al. (2005; also see Zhang and
Kourtzi, 2010) have shown that many regions in the visual cortex
are more responsive to trained than untrained shapes when the
shapes are learned in clutter.

Our results further show that knowledge-based visual disam-
biguation of object category is not mediated by a single set of
regions or a single pathway, but that different brain regions are
activated during recognition depending on the type of learn-
ing even when the object category and task remain the same.
Understanding the precise neural mechanisms by which the type
of learning affects knowledge-based visual disambiguation—the
process by which prior learning and knowledge resolves ambi-
guities in visual input—is likely to be a fruitful area for future
research.
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APPENDIX

FIGURE A1 | Time course of BOLD responses in bilateral medial

occipital cortex. The time course of each given condition from
each given ROI was calculated as the mean response (±SEM) across all
sessions and subjects as determined by FIR modeling (Method 1;
Materials and Methods). During the strong clutter and weak clutter
conditions, the correct response was a “Target Present” report,

whereas during the no target condition, the correct response was a
“Target Absent” report. For these three conditions, the BOLD time
courses are shown separately for correct vs. incorrect responses.
For the “Scrambled” condition, all subjects provided the expected
response in all trials, so that incorrect responses were not
available.
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FIGURE A2 | Time course of BOLD responses for selected ROIs

in Table 2 in the main text. BOLD time courses are shown for
those six ROIs in Table 2 (color-highlighted in Table 2) that

showed significant correlation with the behavioral responses.
Time courses were calculated and plotted as described in the legend to
Figure A1.
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