SOUTHERN

MEDICAL AND SURGICAL JOURNAL.

EDITED BY

I. P. GARVIN, M. D.,
PROFESSOR OF MATERIA MEDICA AND THERAPEUTICS AND MEDICAL JURISPRUDENCE, IN THE MEDICAL COLLEGE OF GEORGIA.

Medical College of Georgia.

"Je prends le bien où je le trouve."

VOL. VI.—1850.—NEW SERIES.

Augusta, Ga.
JAMES McCAFFERTY,
PRINTER AND PUBLISHER.

1850.
PART FIRST.

Original Communications.

ARTICLE XII.

Report of the Surgical Clinic in the Medical College of Georgia, during the Session of 1849-50. By Paul F. Eve, M.D., Professor of Surgery.

Having been requested to furnish a report for the Journal of the cases and operations presented to the Class during the course of Lectures just terminated, I do so in the order in which they occurred, adding just such details of each, as may make them more satisfactory and of some interest to all.

CASE I. Operation for separating the Jaws. This was a boy, aged 8 years, coming from South Carolina. Cause, profuse salivation. Ankylosis, apparently complete. Operation: inhalation of chloroform through the mouth; effects only partial—then free incisions transverse and parallel to both maxillary bones. Some eight or ten teeth, with portions of the alveoli, were removed. Results, fœtor of mouth corrected, and with Mott's Dilator perseveringly used, patient can now open the mouth about three-quarters of an inch between the incisors, the only teeth he has.

II. Removal of foreign body from the Cornea. A negro man from Elbert Co., has had a portion of fodder blade thrust through the cornea into the anterior chamber of the eye, where it has sojourned for two years. It was removed with a cataract needle.

III. Fractured Leg. A white child, 4 years old. Applied the immovable or starch apparatus. Cured without deformity.
IV. *Excision of female mamma.* Patient from Hall county, 26 years old. Decided schirrous tumor. Under chloroform, removed by elliptical incisions. She returned home on the thirteenth day after the operation. Tumors are re-developing within five months.

I have never yet operated upon a schirrous or cancerous breast, where the diagnosis was unequivocal, that the affection did not return.

V. *Amputation of toe.* Cause, ground itch.

VI. *Excision of Tumor—lipoma.* An aged and lean negro woman. Situated upon left shoulder. Its removal was followed by hemorrhage, after the dressings were applied, which was arrested by pressure with compress and bandage.

VII. *Dislocation of Humerus.* Cause, hemiplegia; no treatment.

VIII. *Hydrocele—40 ounces.* Reported in this Journal, (see vol. vi., p. 29.)

IX. *Incised Wound of Hand with Fracture of Phalanges.* White carpenter; injuries the result of circular saw moved by steam power. Portion of thumb cut off and lost, fore-finger divided through distal articulation, and all the others more or less incised. Result, a good and useful hand.

X. *Fracture of Thigh.* An active boat-hand, on our river, aged about 35 years, fell off the upper on to the lower wharf at night. Called to him immediately; no fracture was detected, but there existed some tumefaction over the anterior middle of the right thigh. We are positive the trocanter major turned with the foot and leg, when they were rotated, and no crepitation nor artificial mobility could be produced at the seat of injury; neither was there any shortening. Moreover the patient insisted the bone was not broken, and sustained the extremity upon the heel, the member being drawn up, while lying upon his back. And yet a fracture must then have existed. This was made evident in a few days, when he attempted to walk.

Without entering upon the question of the best position and treatment of fractured thigh, we simply remark here that, for what we consider obvious reasons, the *bent* is selected for fractures of the upper or lower third of this bone, and the *straight* for the solutions of the bone occurring in the middle.
In the treatment, we apply four well padded splints the length of the thigh, and then place the patient in Prof. Gibson's apparatus. This latter alone will answer in some cases, but when we consider the very great liability to deformity in all cases of fractures of the femur, especially in the careless, we make surer work by applying the two at the same time. We give preference to Dr. Gibson's spints over all others for fractures in the middle of this bone, and for all patients: in the adult it overcomes the muscles—in the child, the hands can be secured to the foot-piece or inferior extremity of the apparatus. For fifty cents we have had the two long crutch-like splints with the foot-piece made, and they can be padded with some four to six pounds of cotton.

The reason for using the short spint when four are applied, the one to the outer side of the thigh in addition to Dr. Gibson's, is to prevent the angular deformity outwards, so commonly met with in the treatment of these fractures.

XI. **Excision of Tumor**—lipoma weighing about 4 pounds. Patient a fat old lady from South Carolina. She supposed the tumor was the result of a fall received several years ago. It was situated over the left false ribs. Placed under chloroform, it was removed by elliptical incisions. The recovery was good.

XII. **Whitlow.** Opened.

XIII. **Large Abdominal Tumors.** Case of a negro woman about 45 years old. Large tuberculous masses originating in the abdomen had at last ulcerated and protruded at the umbilicus. These had been removed by the knife, and now there existed new projecting tumors of a fibrous nature. No operation was proposed.

XIV. **General Exostoses.** This was the case of a boy 5 years old, son of Rev. Mr. C——, who likewise presents some nodosities in certain of his bones. This little patient has osseous tumors, varying in size, in different parts of the system, but particularly on the tibia, femur, humerus, &c., of both sides. These enlargements in the bones amount to considerable deformity, and are situated near the joints. When the patient was only three months old he had a convulsion, and these periosteal exostoses were then first noticed. **Prescription**—general invigoration of the system by hygienic and remedial agents;
alteratives, chiefly of iodic preparations—the same for local application, with blistering and firing.

XV. General Anasarca. Presented on account of its immense size, and occurring in a boy: rapidly relieved by the vapour bath, brisk purgation with cremor tartar and jalap, and the acetate of iron, made by adding rusty nails to sour cider.

XVI. Large Polypus of the Nose extracted through the Pharynx. This was removed from a young girl of Scriven county, who had presented symptoms of nasal polypus for two years. The foreign growth could now be seen projecting in the pharynx, around which a tape was secured, and the mass removed. In a few days she returned home well, with the senses of smell and taste completely restored.

XVII. Ankyloblepharon and Symblepharon. This patient was also a young girl from Scriven county, aged about 13 years. When overheated by work six months ago, she waded into a pond, which produced inflammation of the skin of the face, &c. The nature of this could not be ascertained, but she now has the eye-lids closely agglutinated and the lids adherent to the ball on both sides. Under chloroform, the eye-lids were separated and then detached freely from the orbits. Without great care there is danger of a recurrence of the symblepharon, if not also of the ankyloblepharon, to some extent.

XVIII. Ulcer of Cornea. Cured by caustic solution.

XIX. Scrofulous Ulcer of Cornea. Cured by hydriodate of potash with comp. tr. gentian, and caustic to ulcer.

XX. Fractured Thigh. Cause, a fall: direction, transverse, in a boy 6 years old. Gibson's apparatus—cured without deformity.

XXI. Ligature to Primitive Carotid. Patient, a negro man from Putnam county, aged 26. Fell, six years ago, upon a rock, striking the back of his head, followed by hemorrhage from the nose and slight delirium. In the course of a short time epilepsy supervened, and within the past six months total blindness. Although his master was told the case was exceedingly unpromising, and in all probability nothing could be done for the man, he insisted that both medical and surgical treatment should be tried. Having exhausted the first, with no other benefit than to arrest the epilepsy, ligature of the primi-
tive carotid to the side (right) most affected of the head was suggested and acceded to. The ligature came away on the seventeenth day after its application, and up to the time of his return home, more than a month afterwards, there had been no improvement in vision.

XXII. Operation for Artificial Pupil. Failure.

XXIV. " for Pterygium.

XXV. Exsection of three inches of Inferior Maxilla for Spina Ventosa. This operation was performed on a young lady from Randolph county, aged 18 years. The cause of the disease was unknown, probably it was owing to defect of a molar tooth. It was of six years existence; the deformity was great, and pain at times quite acute. Operation: patient under the effects of chloroform, an incision from beyond the angle of the inferior maxillary of the right side over the tumor to a central point under the chin, was then made, and the bone carefully denuded. The stomach tooth of the same side extracted, the bone sawed in two, turned outwards, and again divided beyond its angle. Considerable hemorrhage occurred during the operation; the patient nevertheless had a good recovery—the line of cicatrix being under the chin is scarcely perceived.

The portion of bone removed included one of its angles, was greatly enlarged, and when sawed in two presented a central cavity about the size of a pullet’s egg, the walls of it moreover were more than half an inch thick.

XXVI. Amputation of Thigh. Fungus Haematodes. Negro man from South Carolina, aged 50. Had observed a small round tumor on internal side of knee-joint, more than ten years ago, which has now acquired the size of the two fists, and has bled freely, spontaneous and repeatedly from a small projecting tubercle. The probe here enters without resistance, encountering nothing solid, but gives pain, and its withdrawal is followed by hemorrhage. Fungus haematodes is suspected. Operation: patient under chloroform, tumor laid open by enlarging the issue at the tubercle, when a large quantity of brain-like substance, mixed with blood, was turned out. The thigh was now amputated by the circular method. The patient had a good recovery, and has yet no return or development of this malignant disease, five months since the operation.
XXVII. Compound complicated Fracture of fourth and fifth Ribs—death in nineteen hours. This was the result of an accident on the rail-road, to a stout, athletic negro man, aged 21, by a collision of cars loaded with wood. The fourth and fifth ribs, about their centre, were fractured—one in two places, and both dislocated from the spine; the intercostal arteries were ruptured and the thorax laid open, the lung of that side and the pericardium being fully exposed. There was besides these injuries a compound fracture of the left tibia. The wounds were closed, but the oppression and difficulty of breathing were so great that the patient removed all applications to the chest, and besides laudanum and hot brandy toddy to produce reaction, he drank large quantities of water. Death put an end to his sufferings in nineteen hours after the accident.

XXVIII. Fracture of both Malleoli.

XXIX. Compound Fracture of fourth Metacarpal, and other injury to right hand.

XXX. Concussion of Brain. Case recovered.

XXXI. Compound Fracture of Tibia. Passed into hands of other physicians.

XXXII. Incised Wound of Scalp.

XXXIII. Amaurosis from blow to head. All treatment failed.

XXXIV. Lacerated Wound to scrotum.

XXXV. Exsection of Female Mamma. In a young negro woman for schirrous degeneration from neglected milk abscess. Operation performed under chloroform. Patient well in two weeks.

XXXVI. Amputation of Leg. This was in a patient who had served as a volunteer in Mexico, and had returned home with chronic diarrhoea. He had now sustained a compound fracture of both bones of the left leg at the ankle-joint, from a loaded wagon passing over it. Amputated just below the knee, under chloroform.

XXXVII. Operation for Radical cure of Hernia. In a boy 10 years old, with congenital inguinal hernia on the right side. Performed Bonnet's operation with pins—patient under chloroform. Result, a failure.

XXXVIII. Keloidal Tumor in a cicatrix over a Ventral Hernia. A negro boy, 10 years old, and very unmanageable,
had been gored by a cow eighteen months ago in the right inguinal region. The intestines protruded, a ventral hernia, size of a turkey egg, has been gradually increasing, and upon the cicatrix of the skin an oblong keloidal tumor is growing. While the patient was under chloroform, in cutting out this tumor, (the hernia having been reduced, as was believed,) the intestine proved to be adherent to the cicatrix, and was pretty freely laid open. An artificial anus was the result of this operation, but which has gradually diminished to a small orifice, over which the pad of truss is now placed, and the patient is walking about the Infirmary.

May not this case throw some light on the causation of keloidal or cancroidal tumors, from the fact of the close proximity of fecal matter to the cicatrix? May not the want of cleanliness in the skin of the negro account for the frequency with which this affection is met with in the black, without referring its production in them exclusively to the peculiar organization of the cutaneous structure itself?

XXXIX. Necrosis of Femur.

XL. Cancer of Face. In an old man, and of several years' duration. Chloroform, and excision of the ulceration. Not cured.

XLII. Caries of the Tibia. Patient a negro man in the prime of life. Cause, obscure, probably scrofulous cachexia. Under chloroform, the diseased bone was exposed, the crown of the trephine applied, and the chisel and mallet completed the removal of it. By the use of hydriodate of potash and comp. tinct. gentian, and then Fowler's solution, the patient has greatly improved, and seems to be now nearly well.

XLIII. Excision of part of both Tonsils.

XLIV. Radical cure for Hernia. Second attempt in case referred to (No. xxxvii.), by Mayor's method of invaginating a portion of the scrotum. The boy now wears one of Chase's trusses, and hopes are entertained that the operation will be successful. Doing now well.

XLV. Amputation partial of the Foot. In a free negro woman, from neglect and filth, resulting in extensive ulceration and repeated hemorrhage—patient under chloroform.
XLVI. Excision of Bleeding Tumor from head and neck. This was an old man from South Carolina, having a large tumor of a mixed character over the occipital region of the head, and extending to the neck. While under chloroform, it was excised by elliptical incisions. The hemorrhage was profuse, and six arteries were secured. The tumor was not aneurismal, but had a central hardened portion. It was fibrous, but very vascular.

XLVII. Amputation of the Thigh. Case of a negro man, aged 55, having been burnt on the right knee in infancy. The cicatrix has now taken on a keloidal degeneration, and bleeds from slight causes acting upon its large exposed ulceration, which is very rough, hard, and at times dry. Under chloroform, the circular amputation was performed, and the patient was out of bed in two weeks, with the stump nearly healed.

XLVIII. Fracture of Thigh. In a boy, 7 years old, produced by a bale of cotton falling upon him. Treatment, four spints with Gibson’s apparatus.

Besides these cases and operations, there were several patients presented to the Class with ulcers, hernia, &c. Classified, we have—

<table>
<thead>
<tr>
<th>Category</th>
<th>Cases</th>
</tr>
</thead>
<tbody>
<tr>
<td>Of Fractures of the Thigh</td>
<td>3</td>
</tr>
<tr>
<td>" " Leg</td>
<td>3</td>
</tr>
<tr>
<td>Of all other Bones</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td>9</td>
</tr>
<tr>
<td>Of Amputations of the Thigh</td>
<td>2</td>
</tr>
<tr>
<td>" " Leg</td>
<td>1</td>
</tr>
<tr>
<td>" " Foot</td>
<td>1</td>
</tr>
<tr>
<td>" " Toe</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td>5</td>
</tr>
</tbody>
</table>

Of Tumors.—Lipoma, 2
" Schirrous, Cancer, and Malignant, 5
Other Tumors, 6
Total, 13

Of the 39 cases operated upon, not one died. Of the whole number presented, but one only had a fatal termination, and that within twelve hours after entering the Surgical Infirmary.
ARTICLE XIII.

Calycanthus Floridus—its properties and uses. By Dudley W. Hammond, M. D., of Cullodens, Georgia.

The Calycanthus, or sweet scented shrub, as it is familiarly called, derives its name from the Greek words κάλυξ, calyx, and ἄνθος, an anther or flower, in reference to the calyx being colored, and appearing like a carolla. It is a shrub from three to seven feet high, erect, virgate, stoloniferous, the young branches pubescent, leaves opposite, sometimes acuminate, entire, on short petioles; flowers solitary, axillary and terminal, on short branches; the petaloid segments of the calyx disposed in two series, filaments minutely pubescent, the anterior generally without anthers; capsule turbinate, seeds oval and large. It grows in fertile soils, along rivulets, in the upper districts of South Carolina and Georgia, and is rare in the lower. It flowers in April.

There is a remarkable fact in regard to the Calycanthus, originally noticed by Mirbel. In the stems of this plant, there is the usual deposit of concentric circles of wood around the pith, and in addition four very imperfect centres of deposition on the outside, next the bark, a very unusual structure.

A good figure of this interesting fact has been given by Mirbel, in the *Annales des Sciences Naturalles*, vol. xiv., p. 367. It is also described by Lindley, Don, de Candolle, and Prof. Darby, &c. Lemaire has given a description of the *Calycanthus Floridus* in *Dictionaire Universel D'Historie Naturelle*, at page 78, and states that Buchoz, in consequence of the delightful aroma exhaled from its branches, being so agreeable and attractive, or for some other reason, has made it a genus, dedicated to the very famous madam Pompadour.

At my particular request, Prof. Darby, of Cullodens, has analyzed this shrub. He says—"I have subjected to analysis the twigs of the Calycanthus Floridus which you presented to me, and have obtained the following results. I took 2000 grains for experiment, and obtained in the various products 98 grains. This amount of products would vary very much depending upon the parts of the plant taken. All the essential products lie in the interior bark, and buds. The wood contains scarcely any of the following products.
Green coloring matter with a resinous substance, 5.5
Volatile oil, colorless, and highly inflammable, 10.4 grs.
Bitter substance, soluble in ether and alcohol, 14.6 "
Gummy extract, soluble in water, but not in alcohol or ether, 57.3 "
A volatile oil, readily miscible in water, with a greater specific gravity than the preceding, 2.4
Tannic acid, gallic acid, and a free organic acid, starch, nitrogenized substances, probably, albumen and fibrine, 6.8

98.0

The juice does not take on the vinous fermentation, and of course contains no sugar. It undergoes putrefaction and liberates ammonia.

Out of the 28,000 species of plants in the vegetable kingdom, we have not more than 1 or 2,000 capable of making sanative impressions upon the human system; and many of these which now hold a place in the Materia Medica, if properly tested, would probably be found so feebly endowed with curative virtues, that on a revision of the Pharmacopoeia many of them would be discarded. But, on the other hand, there are doubtless many, possessing inestimable medicinal qualities, which are hidden and unknown. It should then be the great and paramount duty of every physician to explore the great and inexhaustible store-house of nature, in search of those hidden treasures which have been kindly provided for the alleviation of the innumerable maladies to which flesh is heir.

Man is a constant prey to the ravages of disease in every clime and place upon the "habitable globe;" and it is almost a truism in medical science, that in every inhabited region of the earth there are to be found medicinal plants, capable of alleviating the diseases peculiar to it. As a proof of this, the inhabitants of warm countries are bountifully supplied with plants possessing acescent and febrifuge qualities, and others having virtues suited to the diseases incident to this clime. Who can contemplate the discovery of the Cinchona without the most heart-felt gratitude to Him who brought it into existence. We find also in all the malarious districts of the South
the Cornus Florida and the Liriodendron Tulipifera. And in the cold and bleak regions of the North, plants grow and flourish suited to its diseases, such as the uva ursi, Lichen, etc., etc.

From these considerations we cannot resist the conclusion, that, in this, our delightful country, there are, no doubt, hundreds of plants, highly medicinal and whose virtues have not yet been discovered. It is then the imperative duty of every medical practitioner, so far as it may be in his power, to use such prudent and safe means as may lead to the discovery and development of those great natural resources of the healing art.

I am not aware that any notice of the medicinal properties of the Calycanthus has been taken by any writer. I was induced to believe that it was medicinal from its highly pungent and agreeable odor, its mild and pleasant bitter taste, and its peculiar effects upon some constitutions. Flowers* and other odoriferous substances are generally agreeable to the great majority of mankind. Prof. Dunglison, however, at p. 39 of his general Therapeutics, states that, the smell of the Calycanthus Floridus is so disagreeable to some persons as to be almost intolerable. I also knew a lady who could not inhale its fragrance, without being thrown into a violent paroxysm of spasmodic asthma, often lasting for hours together.

I have found the Calycanthus to be endowed with the following medicinal properties: Slightly stimulant, diaphoretic, tonic, carminative, diuretic, and perhaps anodyne.

In the form of infusion, it is a mild stimulant and diaphoretic, and may be given in dyspeptic conditions of the stomach, attended with flatulence, cardialgia, griping pains of the stomach and bowels, neuralgia, etc. When first taken, it soon produces a slight exaltation of the vital forces, the heart’s action is aroused, and the pulse soon feels the impulse; the excitation is quite agreeable, but is evanescent, unless the dose is frequently repeated. In torpor of the general system, with depression of the sensorium, I have found it a mild and efficacious remedy. In abnormal conditions of the stomach, consequent upon an atonic state, attended with flatulence, and a dry and harsh skin, it often produces the happiest effects.

From the analysis of the Calycanthus, its modus operandi

* I allude to those which exhale a pleasant smell.
upon this pathological state of the system is readily com-prehended. The "bitter substance," acts as a tonic upon the muscular tissue of this organ, whilst the "volatile oil" exerts a gentle stimulating effect upon the sentient extremities of the nervous filaments of its inner coat, bringing into vigorous action the great central organ of sympathetic action. The stomach, before painful, has new vigor imparted to it, and soon becomes quiescent from the expulsion of flatus; the skin also is relaxed, and a general diaphoresis follows, together with an enlivened state of mind, which is generally succeeded by a calm and quiet slumber.

I have long been in the habit of prescribing a tincture of the Calycanthus in colicky affections of infants. I consider it superior to the camphorated tincture of opium, so universally used both by nurses and physicians. It readily acts as a carminative, removing the cause of these distressing ailments. It does not constipate the bowels, as does the camph. tinct. of opium; neither does it produce the starting, often caused by this popular remedy.

In Arthrodynia, it deserves notice. I am well acquainted with an elderly gentleman in this vicinity, who is in the habit of drinking a strong, hot infusion of it for Podagra, and he assures me that it is the best remedy he ever tried.

Another affection might be mentioned, in which I have used it with signal success. In those violent nervous headaches, to which some females are subject immediately preceding the regular return of the catamenia, a cup full or two of the infusion, drank warm, soon alleviates the pain, and in many instances, I am persuaded, hastens the return of the flux.

Although the Calycanthus is a mild stimulant, I have found its administration contra-indicated in an inflamed condition of the gastro-enteritic mucous membrane. Is it not worthy of trial in adynamic fevers, attended with asthenic hyperæmia of the encephalon, when a slight exaltation of the vital powers is required?

The Calycanthus is a tonic, very mild in its operation, and may be properly classed with the sub-tonics. As a general rule, vegetable tonics are bitter, and disagreeable to the taste, and sometimes nauseating to the stomach. In this respect, the
Calycanthus claims a decided preference over most of them, as it is not very bitter, neither is it disagreeable to the taste. When prescribed as a tonic, I direct the cold infusion to be made strong, and to be drank in small quantities, frequently repeated during the day.

As a remedy in Dyspepsia, the great protean malady of the nineteenth century, whether idiopathic, or the sequence of some acute disease, it, in a few cases, had no substitute. From my limited observation of its effects in this distressing disease, I most respectfully commend it to the favorable consideration of the profession.

As a remedy in Bilious Remittent and Intermittent fevers, it is often valuable, especially after the prime vae have been well cleansed, and the liver emulged by calomel. During the apyrexia, I direct a strong infusion of the cortical portion to be drank, which, in most cases, arrests the next paroxysm of fever. Large draughts of it taken in anticipation of a chill, in intermittent fever, very often as effectually destroys its periodicity, as most other vegetable tonics, the cinchona excepted.

Analysis shows it to contain a large amount of a bitter principle, for which I would propose the name of Calycanthine!

Judging from its modus operandi upon the system, I would suggest it to the profession as a suitable remedy in Leucorrhæa, a disease which has troubled me more than all others with which I have had to contend. When the discharge is excessive, the constitution becomes extremely weak and nervous; the skin cold and clammy; stomach feeble and flatulent; and the mind, too, sooner or later, becomes involved in this morbid catenation. The patient often looks upon her case as hopeless; "she pines away," and "void of counsel," she becomes "timorous, fearful, and sad." In this pathological state of the system, I would recommend a trial to be made of the Calycanthus, with other suitable remedies.

There is one fact in regard to the Calycanthus which it might be well to mention. I have known it in two instances to produce ptyalism, after having been used for a few days: the flow of saliva was immoderate in one of them. No soreness of the gums in either. It is an anodyne, but not in the same sense, perhaps, in which opium is anodyne. Any remedy which
equalizes the circulation, or that excites the stomach, thereby expelling the flatus, will relieve pain. The Calycanthus, acting in this way, often produces ease and quiet. I, however, have frequently observed, that after giving a warm draught of the tea, that the patient soon became sleepy; and those to whom I have prescribed it as a tonic and alterative, have frequently remarked its tendency to produce drowsiness. I consider its anodyne operation to be the result of its action upon the brain and nervous system, in the same way that camphor and the nepeta cataria are anodyne.

As a Diuretic, I have for several years prescribed an infusion of the Calycanthus in dropsical affections, with marked benefit. I direct a strong, cold infusion of the bark, to be drank in large quantities, say from 2 to 3 quarts per day; and should it appear to be tardy in exciting the secretory functions of the kidneys, I generally give 10 or 15 grs. of the nitrate of potass., or a drachm of the super-tartrite, two or three times in the day, in a half tea-cupful of the infusion. This combination generally brings off large quantities of urine in the course of thirty-six or forty hours. Notwithstanding it requires, in some cases, the aid of the nitrate or sup. tart. pot. to direct its action to the renal apparatus, it is nevertheless a diuretic per se, almost in every instance causing more or less diuresis; and this circumstance cannot be considered an exception to the general rule. Squills, for example, produce more or less diuretic action, but its virtues in this respect are greatly heightened by the addition of the proto-chloride of mercury. Other examples might be given.

After the kidneys have been aroused to vigorous secretion from the infusion of the potash—the latter may often be discontinued without diminishing the urinary secretion—the infusion alone, being sufficient to keep up a copious discharge, when once established by this combination. I have generally found it necessary to discontinue it after eight or ten days, in consequence of the anorexia it produces. This is caused in part, I imagine, by over-distention of the longitudinal and circular fibres of the muscular coat of the stomach, and a dilution of the gastric juice. It will be recollected, when speaking of it as a tonic, that I recommended it for dyspepsia; but in that
case, to be drank in small quantities, its action upon the stomach being governed by the quantity taken into it, and the length of time it is continued. After suspending it a few days, for the stomach to regain its tone, it may be resumed again, and in this way continued throughout the whole course of treatment. To recommend a remedy for dropsy, without stating what kind, or without explaining the pathological state of the system, to which such remedy is applicable, would most certainly be considered unsatisfactory to the profession, if I had not already sufficiently explained its modus operandi, and given in detail the analysis of the remedy under consideration. It will then be only necessary for me to say, that in all cases where the hydropic accumulation or diathesis is the result of asthenia, this remedy may be safely and beneficially prescribed.

When the assimilative process is deranged from a morbid condition of the stomach and chylopoietic viscera, emaciation and debility ensue, thereby laying the foundation of dropsy, by destroying the proper balance between the exhalent and absorbent systems. It may then be assumed, that in this pathological state of the organism that "the common predisponent cause is debility."

In such cases, a mild, stimulating sub-tonic would be proper, and at the same time, some article would be necessary to carry off the serous effusion. The Calycanthus will fill every indication in such a case, or as nearly so as any remedy with which I am acquainted.

But for fear of extending this essay too far, I might very appropriately detail the history of three cases of dropsy I have recorded in my note-book, which would more clearly show the great powers of this remedy in hydropic accumulations. It must suffice on this occasion to notice them cursorily.

One was a married lady, 22 years of age, who had extensive anasarca of the whole subcutaneous cellular tissue, produced by irregular and painful menstruation: she had been afflicted with it for years, and she had undergone the usual routine of medical treatment. I put her upon the infusion of the Calycanthus, and in two months she was cured. In the meantime, to the great satisfaction of herself and friends, encyesis took place for the first time; she carried the fetus to the full period
of utero-gestation, and on the first day of October last, was delivered of a fine healthy male child,—since which time she has been entirely free from any appearance of dropsy.

I will here mention that the patient took, in conjunction with the infusion, for two or three weeks, the muriated tinct. ferri, but she had repeatedly taken chalybeates before, with only temporary relief.

The second case, was œdema of the feet and legs in a child 5 years of age, occurring as the sequel of chronic diarrhoea. The child had been treated with the common remedies without any abatement of the symptoms. The cold infusion, aided by a few doses of hydrarg. cum cretâ, dispersed the disease in fifteen days.

The third case, was a lad 14 years of age, in whom extensive anasarca supervened after the operation of lithotomy, commencing on the seventh day after the extraction of the calculus.* I prescribed a hydragogue cathartic, which operated well, causing some diminution of the swelling, and directed Port wine to be given freely. One bottle was consumed with but little benefit. I ordered the infusion to be taken every three or four hours, and in eight days he was convalescent. The wound healed readily, and the patient had a tedious but complete recovery.

The hot infusion is made by pouring a pint of boiling water upon an ounce of the bark and buds, covering the vessel for twenty or thirty minutes. Of this, from two to four fluid ounces may be administered at one time. The cold infusion is prepared by adding two ounces to a pint of water, and suffering it to remain six or eight hours. Dose, from one to two fluid ounces, three or four times per day.

The Tincture is made, by taking of the bark and tender twigs, two ounces, bruised; diluted alcohol, one pint—macerate for seven days, and filter through paper. This tincture possesses the active properties of the Calycanthus Floridus. The dose is from one to four fluid drachms.

* The calculus is now in the hands of Prof. A. Means for analysis.
ARTICLE XIV.

Phenomena.—Amylaceous materials being the only substances from which the chemist can manufacture sugar, it might be inferred that it is also from them that sugar is produced in the system, or at least in the digestive apparatus. It is indeed now well established, that sugar is formed during digestion, by the action of the pancreatic juice upon starchy substances. This can be easily proved by placing starch in a tube with this secretion. Saliva will produce the same effect in a tube, but does not do so in the stomach; for the acidity of the gastric juice prevents its action. The pancreatic juice has not an acid fluid to contend against—hence it is unchecked in its action, and when the aliment containing starch comes in contact with it in the intestines, sugar is formed. This sugar is called glucose, or unchusrystalizable sugar, resembling very much the sugar found in grapes. The glucose thus formed in the digestive tube from starchy aliment is absorbed by the veins and carried into the circulation through the portal system. If, then, an animal be fed upon food containing starch, sugar will be found in the blood, which sugar was manufactured in the digestive canal. But will this source alone account for the amount ordinarily found in the economy? If so, it will certainly not account for the enormous amount frequently found in the blood, urine, and other secretions, during diabetes. It could not be well imagined that a man could eat sufficiently of starchy food to supply the excessive quantity of sugar found in the economy of a diabetic patient. There is an experiment made by M. Bernard, which furnishes conclusive proof that digestion is not the only process by which is produced the sugar found in the circulation. He has frequently taken two dogs, and fed one indiscriminately upon azotic and non-azotic food, (meat and bread,) and the other upon azotics alone for months together. At the end of this time he has taken the blood from the right auricle of each dog, and found it in each to contain sugar.
blood may be taken from the right auricle by passing a catheter down the jugular vein, taking care, however, that no air may pass into the circulation. The opinion that aliments are the only source of sugar, would lead us to believe that no sugar ought to be present in the blood of the animal that was fed upon azotics alone; yet the experiment proved that as much sugar existed in the blood of one, as in that of the other. One would suppose that if sugar was derived exclusively from starchy food, that no sugar ought to be found in the blood of the animal that had eaten no such food; but the experiment proves conclusively that the blood of animals will contain sugar, independently of the character of their food, whether azotic or non-azotic. Bernard, seeing this, concluded that sugar must be formed by some other action, as well as by digestion. He accordingly instituted a series of experiments, to determine where the sugar originated. Having ascertained that sugar existed in the blood taken from the right auricle of animals, it was clear that it came from above, through the superior vena cava, or from below, through the inferior cava. He examined the blood contained in the superior, but found no sugar; he then examined the blood of the inferior cava, and detected it here on its way to the heart. The conclusion was then plain, that it was formed by some organ or portion of the body, whose venous blood was carried into the inferior cava. The crural veins were next examined, and their blood contained no sugar, nor did any exist in the inferior vena cava, below the liver or below the joint at which the hepatic veins empty into it. The probability seemed then that it was formed by some of the abdominal viscera. This could be determined readily by examining the blood of the veins of each of these organs. Each vein was examined in succession, but sugar existed in none of them—the viscera themselves did not escape; a decoction was made of them by maceration in boiling water. The search for sugar in their tissues was equally unsuccessful, save in the liver—sugar was found in abundance in the decoction of its tissue. The result of the experiments is then, this: that sugar, or glucose, was found in none of the veins, save in the inferior cava, above the opening of the hepatic veins. None existed in this vein below the point at which the hepatic veins open into it, nor in the vena porta as it enters the liver.
In making this experiment, a small opening should first be made in the abdomen, and the vena porta tied; for if the abdomen be largely opened without this precaution the blood of the liver will regurgitate and carry the sugar in this vein, because the pressure of the abdominal walls are obstructed. A neglect of this precaution might tend to the error that sugar exists always in the vena porta. This abdominal regurgitation is seen in paracentesis for ascites.

Sugar was found only in the blood that made its exit from the liver, and in none of the viscera save this organ. The conclusion then, that this substance was formed in the liver was highly justified by experiments, thus giving to this organ a double secretory function, resulting in the production of both bile and sugar.

Bernard believes sugar to be a veritable secretion. It is manifestly formed under the influence of the nervous system. A simple irritation of the pneumogastric nerve, as pinching, will increase its secretion. If this nerve be cut, the secretion is immediately arrested. Besides, if in a rabbit, the origin of the pneumogastric, which is near the fourth ventricle and calamus scriptorius, be pricked, the increase in the quantity of sugar formed will be so great as to constitute a real diabetes; and sugar will be found in abundance in his blood and urine. The origin of this nerve may be reached by passing a pointed instrument between the occiput and the atlas. This artificial diabetes will cease as soon as the irritation has passed away: it never lasts over three days in a rabbit, nor more than seven in the dog.

The opinion that it is a secretion, has been combatted by some. The objectors urge that the sugar may be manufactured in digestion, absorbed by the veins and deposited in the liver, this organ serving as a reservoir. This is by no means a serious objection, for dogs have been fed for months upon azotised food alone, and yet sugar existed in their blood. It cannot be easily imagined that a sufficient quantity could collect in the liver to supply the purposes of the economy for such a length of time. The influence of the nervous system is a sufficient answer to this objection. There is, however, this difference between this secretion and the others—that it has no duct, but is emptied directly into, or is rather absorbed by the hepatic veins.
Bernard having proved that sugar was manufactured in the economy and thrown into the circulation, then attempted to ascertain what becomes of it. He traced it from the liver up the inferior cava, to the right auricle and ventricle of the heart, and up the pulmonary arteries to the lungs. But in these organs it disappeared, for none could be found in the pulmonary veins as they returned the blood from the lungs to the heart. It was evidently then destroyed in the lungs. How and by what process? was the next question to be solved. It has been long known that caustic potash placed in contact with sugar of glucose would destroy it, disengage carbonic acid, and leave in the vessel a brown acid. Hence it has been supposed that the alkalies of the blood destroyed the sugar, and that when they were not in sufficient quantity to destroy this substance, it accumulated in the economy and constituted diabetes. Although glucose may be destroyed in a tube by a strong alkali, this action certainly does not take place in the economy, for the chemical action would be so powerful as to destroy the vitality of the tissues, even admitting that the alkalies were sufficiently strong, (which is not the case). A simple experiment will prove that its destruction is not due to the alkalies of the blood. If this fluid be heated to 100° Reaumur, it will no longer possess the property of destroying sugar, although the alkalies are not altered by this elevation of temperature. The blood of a diabetic is no less alkaline than that of a healthy person; hence there is no more reason why one person should be affected with this disease than another. M. Bernard does not believe its destruction to be effected by the alkalies, but by a peculiar organic ferment that the blood contains. This fermentation and destruction of the sugar takes place only in the lungs, because there it meets, or comes in contact with the air, which is the great promoter of fermentation. The ferment of the blood is, like all organic ferments, destroyed by concentrated acids and heat. If the blood, as before mentioned, be heated to 100° R. it can no longer destroy sugar, because the fermentative principle is rendered inactive, and not because of any alterations in the alkalies. By this fermentation lactic acid is formed, which unites with the soda of the blood to form the lactate of soda, which passes into the circulation, and carbonic
acid gas is given off. When the lactic acid unites with the soda, heat is produced, and this is one of the sources of animal heat. Sugar then serves two purposes to the economy—1st, production of animal heat, and 2d, the elimination of carbonic acid gas. It serves no purpose of nutrition, but is simply a respiratory aliment. In animals whose liver secretes but little sugar, their temperature is very low. When the secretion of sugar is arrested by cutting the pneumogastric nerve, the animal heat gradually, but very sensibly, diminishes. These two circumstances add strength to the opinion that sugar assists in the production of animal heat.

Sugar being secreted by the liver, and destroyed by the lungs, it may be conceived in what manner diabetes is produced. This must be done in one of two ways—either by a diminution of the quantity of the fermentative principle of the blood, the agent of the destruction of the sugar, thereby allowing an accumulation to take place in the economy, and to pass out through the secretions; or else the accumulation arises from a super-secretion of this substance by the liver, to such an amount that the ferment cannot destroy it. The first opinion, though admissible, is not at all appreciable, for an estimate of the increase or decrease of this principle cannot be made. M. Bernard inclines to the latter belief—that it is the result of a super-secretion of the liver: he thinks that it is at least the most frequent cause of this disease. McGregor's experiments (in Glasgow) would seem to oppose the opinion that it is a result of the super-secretion of this organ. He gave only meat to a healthy man, and to a diabetic, and a short time after eating, he made them both vomit. In the matters vomited by the healthy person no sugar could be found; but those of the diabetic contained it. He concluded therefore that in this disease the gastric juice possessed the abnormal property of changing food into sugar. The presence of sugar in the matters vomited by the diabetic patient can be easily accounted for; the blood of this man was saturated with sugar, and it passed into the stomach with the gastric juice, where it was secreted, as it does in the urine. All foreign substances placed in the blood, the prussiate of potash, for example, will pass into the stomach with the gastric juice. The frequent association of diseases of
the lungs with diabetes, can be readily explained by admitting that the latter is caused by an excessive secretion of the liver. The secretion being increased, the lungs are forced to take on an increased action to destroy it and prevent its accumulation in the economy. Hence the air expired by a diabetic contains more carbonic acid than that of a healthy person. The lungs, containing this abnormal activity, gradually becomes fatigued, exhausted, and finally diseased.

Any acute disease supervening upon diabetes, will arrest its progress until the acute malady be cured. M. Andral notices a singular example of this. A diabetic patient, whilst under his care, was frequently attacked with diarrhea, and at each attack the diabetic symptoms were relieved temporarily. It has been observed, that the blood of a diabetic contained little or no sugar after death. This is a singular fact, but is doubtless owing to the lingering existence and gradual exhaustion of the nervous system before death. If a person laboring under diabetes be at the same time affected with phthisis, but little sugar will be found in his blood after death. If, however, the patient dies suddenly, sugar will be abundant in his blood.

M. Bernard has as yet proposed no treatment for this disease. He, however, advises the physician to direct his attention to the nervous system, and not exclusively to the digestive canal, as has heretofore been done. Sugar is evidently secreted under the nervous influence, and diabetes may be styled a nervous disease; for any powerful agent that will modify the nervous system will mitigate this affection. Hence it is that so many remedies have been proposed, nearly all of which will diminish its intensity temporarily.
PART II.

Reviews and Extracts.

The subject opened in this paper is a very curious one, as also of great interest in general physiology, and of practical importance to breeders. Instances are sufficiently common among the lower animals, where the offspring exhibit, more or less distinctly, in addition to the characters of the male by which they were begotten, the peculiarities, also, of a male by which their mother had at some former period been impregnated,—or, as it has been otherwise expressed, where the peculiarities of a male animal, that has once had fruitful intercourse with a female are more or less distinctly recognized in the offspring of subsequent connections of that female with other males. (Alison's Outlines of Phys.) It is interesting to inquire whether this is a general law in animal physiology; and, if it be, whether and how far it is modified in its operation in different animals, and under different circumstances. But to the human physiologist, and to the physician, it is of more immediate interest to inquire whether or not the fact extends also to his own species; and, if it does, to ascertain how far it applies, and whether it does not admit of illustration by, and serve itself, in its turn, to illustrate certain known facts in regard to the communication and the constitutional effects of the syphilitic and other morbific poisons, the scrofulous diathesis, &c. And, in particular, it can hardly fail to suggest some such curious questions as the following, viz:—

1st. Whether, in the case of a woman who has been twice married, and borne children to both husbands, the children born to the second husband ever, or generally, partake of the peculiarities of the first husband.

2d. Whether, in a family of several children, the younger children, rather than the elder, are disposed, cæteris paribus, to exhibit the characters of the father.

3d. Whether a woman who has born several children by the same husband, may not ultimately acquire some of the physical characters, or at least imbibe and manifest some of the morbid tendencies, of the latter.

In treating of this subject, Dr. Harvey first states the facts
at present known regarding it, and second, considers the theories offered to explain it.

The facts of the subject may be most conveniently noticed, 1st, in relation to the lower animals; 2d, in relation to the human species.

1. In the Brute Creation.—A young chestnut mare, seven-eighths Arabian, belonging to the Earl of Morton, was covered, in 1815, by a quagga, which is a species of wild ass from Africa, and marked somewhat after the manner of the zebra. The mare was covered but once by the quagga; and, after a pregnancy of eleven months and four days, gave birth to a hybrid which had distinct marks of the quagga, in the shape of its head, black bars on the legs and shoulders, &c. In 1817, 1818, and 1821, the same mare (which had, in the mean time, passed into the possession of Sir Gore Ouseley) was covered by a very fine black Arabian horse, and produced, successively, three foals, all of which bore unequivocal marks of the quagga. A mare belonging to Sir Gore Ousley was covered by a zebra, and gave birth to a striped hybrid. The year following, the same mare was covered by a through-bread horse, and the next succeeding year by another horse. Both the foals thus produced were striped, i.e., partook of the characters of the zebra.* And it is stated by Haller, and also by Becker, that, when a mare has had a mule by an ass, and afterwards a foal by a horse, the foal exhibits traces of the ass.†

In the foregoing cases, the mares were covered, in the first instance, by animals of a different species from themselves. But cases are recorded of mares covered in every instance by horses, but by different horses, on different occasions—where the offspring partook of the characters of the horse by which impregnation was first affected. Of this Mr. M'Gillivray gives two examples. Thus, in several foals, in the Royal stud at Hampton Court, got by the horse Acteon, there were unequivocal marks of the horse Colonel,—the dams of these foals were bred from by Colonel the previous year. Again, a colt, the property of the Earl of Suffield, got by Laurel, so resembled another horse Camel, "that it was whispered, nay, even asserted, at New-Market, that he must have been got by Camel." It was ascertained, however, that the mother of the colt was covered, the previous year, by Camel.

It has often been observed, also, that a well-bred bitch, if she have been impregnated by a mongrel-dog, will not, although

* M'Gillivray, "Aberdeen Journal," March, 28, 1849. Paintings of these animals and their skins are said to be preserved in the Museum of the Royal College of Surgeons of England.
lined subsequently by a pure dog, bear thorough-bred puppies in the next two or three litters.*

The like occurrence has been noticed in respect of the sow. A sow of the black and white breed (known as Mr. Western's breed) became pregnant by a boar of the wild breed, of a deep chestnut colour. The pigs produced were duly mixed, the colour of the boar being in some very predominant. The sow being afterwards put to a boar of the same breed with her own, some of the produce were observed to be stained or marked with the chestnut colour that prevailed in the former litter. And, on a subsequent impregnation, the boar being still of the same breed as the sow, some of the litter were also slightly marked with the chestnut colour. What adds to the value of the fact now stated is that, in the course of many years' observation, the breed in question was never known to produce progeny having the smallest tinge of the chestnut colour.†

Breeders of cattle are familiar with analogous facts as occurring in the cow. A pure Aberdeenshire heifer was served with a pure Teeswater bull, to whom she had a first-cross calf. The following season, the same cow was served with a pure Aberdeenshire bull; the produce was a cross calf, which at two years old had very long horns, the parents both hummel.‡ A pure Aberdeenshire cow was served in 1845, with a cross bull —i.e., an animal produced between a first-cross cow and a pure Teeswater bull. To this bull she had a cross calf. Next season she was served with a pure Arberdeenshire bull,—the calf was quite a cross in shape and colour.§

Mr. M'Gillivray, after narrating the whole of the foregoing examples, says: "Many more instances might be cited, did time permit. Among cattle and horses, they are of every day occurrence."

2. In the Human Species.—The facts bearing on this subject are few, and not to be relied upon, and the following observations, Dr. Harvey says, intended rather to suggest and direct, than to satisfy, inquiry.

Dr. Allen Thomson, in his article on generation, in the "Cyclopaedia, of Anatomy and Physiology," remarks: "It is affirmed that the human female, when twice married, bears occasionally to the second husband, children resembling the

* Kirke's Handbook of Physiology, p. 613.
† Philosophical Transactions for 1821, p. 23. "Apart from a state of domestica
tion," says Mr. M'Gillivray, "I do not believe that there is one solitary instance in which an animal has produced offspring of various colours. Animals, left entirely to the operation of natural causes, never exhibit this sporting of colours; they are to be distinguished by various and often beautiful shades of colour; but then each species is true to its own family type, even to a few hairs or small parts of a feather.
‡ M'Gillivray, loc. cit.
§ Ibid
first, both in bodily structure and mental powers." And Dr. George Ogilvie, of this city, informs me of a case which fell under his own observation, where a woman was twice married, and had children by both husbands, and where the children by both marriages were scrofulous, although only the first husband had marks of that diathesis; the woman herself, and the second husband, being, to all appearance, quite healthy.

Dr. Ogilvie's case is clearly beset by so many sources of fallacy, that we cannot venture at present to regard it as a case in point. Dr. Thomson does not bring forward any instances, nor offer any proof, in support of his statement; and, indeed, he gives it, without saying whether he thinks it well or ill-founded. Any such statement, it is plain, based on observation of the children of European parent—i.e., where the female and both her husbands and their children are all white—must be comparatively difficult of verification; but it is equally plain that means exist for subjecting it to a pretty decisive test. There are equally distinct breeds of the human family as of any of the lower animals; and all that seems requisite in regard to determining the question under consideration is, to observe accurately, whether the children of European parents, where the woman has, in the first instance, had offspring by a negro, exhibit, traces of the latter in the colour of the skin, the form of the features, &c.; or vice versa, whether the children of negro parents, where the woman had, first of all, been impregnated by a European, exhibit the peculiarities of the latter. Of the former case, a medical friend informs me that he recollects hearing of an instance of the kind as occurring in this neighbourhood, but cannot vouch for the truth of it. Of the latter case, if the general fact applies to the human species, instances must abound in our West India colonies, in the United States of America, and in other parts of the world. My colleague, Dr. Dyce, tells me that he has certainly known one instance (if not more,) where a creole woman bore fair children, to a white man; and that the same woman had afterwards to a creole man other children, who bore much resemblance to the white man, both in features and in complexion. But two very intelligent friends—the one a West India proprietor, the other a medical man—both long resident in Jamaica, tell me that they never noticed, nor ever heard, of an instance of the kind, although connections of that sort are common there, and children born under such circumstances very numerous. It is singular, indeed, if instances of the fact in question do occur, and still more if they are of frequent occurrence, that they should not be notorious. It is conceivable, however, and by no means improbable, that cases do exist, but that they have
been overlooked from the traces of the European being so minute as to escape ordinary observation, and the fact have remained unknown, from special attention never having been directed to it.

If the male does exert any such influence as is here in question, on the constitution and the reproductive powers of the female, it is conceivable that, by each successive impregnation effected by him, that influence may be increased; and, if so, the younger children begotten by him, rather than the elder, might be expected, ceteris paribus, to bear their father's image. And this more special fact, if ascertained, would establish also the more general one. I am not aware, however, of any specific facts, bearing upon it, nor of any popular notions regarding it. But my colleague, Dr. Laing, is cognizant of the case of an English gentleman who had a large family by a negro woman, in the West Indies, and where the children successively exhibited more and more the European features and complexion.

But, however this may be, there is a popular belief that, in the course of years, a woman comes to resemble her husband, and that not merely in respect of temper, disposition, or habits of thought, but in bodily appearance. But, in so far as the notion may hold good, it may be true only of the features, and of these only as they indicate or bespeak the inward feelings of the mind, which, from long and familiar intercourse, may, to a certain extent, become common to man and wife. In so far as the notion is true in any other respect, and the parties have had several children, it may suggest the question, whether the assimilation is not referable to an influence exerted by the husband, through the medium of the foetus in utero, on the constitution of the wife? The question is probably an idle one, and the notion only a popular error. In so far, however, as there is anything in it, the explanation suggested gives a peculiar, and, it may be added, a physiological significance, to the language of Scripture relative to man and wife, at least when their intercourse has been fruitful—"They twain shall be one flesh."

It is of more immediate interest, however, and of greater practical moment, to ascertain whether, through the medium of the foetus, the husband may impart to his wife either the syphilitic virus, or the scrofulous diathesis, or any other constitutional morbid tendency (e. g. insanity) which he may possess. Facts are wanting on this subject; but it is not underserving of patient inquiry. Dr. Ogilvie's case, formerly referred to, if it could be relied on, would be an instance of it. Before the mother could have imparted the scrofulous taint to
her offspring by the second husband, she must herself have imbied it from her first husband through the medium of his offspring while in utero. And, although still seemingly free of the taint, it may have required only the appropriate external conditions to call it into full activity in her own person. And with regard to the syphilitic poison, there is no difficulty in understanding, and it is quite within the bounds of probability, that the foetus, if contaminated with by its father, it may convey it to the mother. Messrs. Maunsell and Evanson, after mentioning that they have notes of the case of a syphilitic child, whose mother had been infected by a former husband (they do not say in what way)—and to all appearance, cured five years before its birth—the father of the child (her second husband) being in good health, state that their experience would enable them to adduce many curious facts bearing on the communication of the syphilitic poison.* Perhaps their experience might furnish an affirmative solution of the question at issue. It has been affirmed, indeed, that a man who has once had syphilis, but been seemingly cured of it for many years, may yet so retain the taint of it as to contaminate his offspring, without, at the same time, tainting his wife. Very possibly. But this does not prove that he may not contaminate his wife also, and the observation itself is in that respect fallacious, inasmuch as, in any given case of the kind, the wife may really have imbied the virus, although in a latent form, and might subsequently give proof of the reality of the fact by tainting the offspring begotten by another and a perfectly healthy husband. Adopting this view, it may be found of importance, in contemplating marriage with a widow, to inquire into the constitutional peculiarities of her deceased husband!

The following additional cases, illustrative of this question, have recently been communicated to Dr. Harvey; the first by the Rev. Charles M'Combie, of Tillyfour, minister of Lumphanan, in Aberdeenshire; the second by Professor Simpson, of Edinburgh; and the third by Professor Pirrie, of Aberdeen:—

1. Mrs. ——, a neighbor of Mr. M'Combie, was twice married, and had issue by both husbands. The children of the first marriage were five in number; of the second, three. One of these three, a daughter, bears an unmistakable resemblance to her mother's first husband. What makes the likeness the more discernible is, that there was the most marked difference, in their features and general appearance, between the two husbands.

2. A young woman, residing in Edinburgh, and born of white

(Scottish) parents, but whose mother, some time previous to her marriage, had a natural (mulatto) child, by a negro man-servant, in Edinburgh, exhibits distinct traces of the negro. Dr. Simpson, whose patient the young woman at one time was, has had no recent opportunities of satisfying himself as to the precise extent to which the negro character prevails in her features; but he recollects being struck with the resemblance, and noticed particularly that the hair had the qualities characteristic of the negro.

3. Mrs. H——, apparently perfectly free from Scrofula, married a man who died of phthisis. She had one child by him, which also died of phthisis. She next married a person who was to all appearance equally healthy as herself, and had two children by him, one of which died of phthisis, the other of tubercular mesenteric disease—having, at the same time, scrofulous ulceration of the under extremity.

Great difficulty has been felt by physiological writers, in regard to the proper explanation of this kind of phenomena. They have been ascribed by some to a permanent impression made somehow by the semen of the first male on the genitals, and more particularly on the ova, of the female; and by others to an abiding influence exerted by him on the imagination of the female, and operating on her mind at the time of her connection subsequently with other males, and perhaps during her pregnancy. But they seem to be regarded by most physiologists as inexplicable.

Very recently, in a paper published in the "Aberdeen Journal,"* an intelligent veterinary surgeon, Mr. James M'Gillivray, of Huntly, has offered an explanation, which seems to Dr. H. to be the true one. His theory is set forth in the following statements quoted from that paper: "When a pure animal of any breed has been pregnant to an animal of a different breed, such pregnant animal is a cross ever after; the purity of her blood being lost, in consequence of her connection with the foreign animal; and again: "If a cow, say of the pure Aberdeenshire breed, is in calf to a bull of the short-horn breed (known as the Teeswater breed), in proportion as this calf partakes of the nature and physical characters of the bull, just in proportion will the blood of the cow become contaminated, and herself a cross, forever incapable of producing a pure calf of any breed." "It is maintained, therefore, (Mr. M'Gillivray adds,) that the great variety of non-descript animals to be met with are the result of the crossing system: the prevailing evil of which is, the admission of bulls of various breeds to the same cow, whereby the blood is completely vitiated."

* March 21 and 28, 1849.
Mr. M'Gillivray is probably quite wrong in assuming that there is a direct vascular connection between the foetus and its mother; but this, as Dr. Harvey observes, is not necessary to establish the theory; "perhaps," he says, "the best general expression of the theory is, that the foetus, partaking, as it must, of the characters or peculiarities of its father, inoculates therewith the blood, and, generally, the system of its mother."

"In connection with the constitutional influence exerted by the male, through the medium of the foetus in utero, on the system of the female, another and a very singular question," says Dr. H., "may be raised. In the case of an aboriginal woman of colour, does previous impregnation by a European male render the female incapable ever after of fruitful intercourse with a male of her own race?

"This question is suggested by an observation, made in various parts of the world, by the excellent Count de Strzelecki, relative to the effect of fruitful intercourse between an aboriginal female and a European male. 'Whenever such intercourse takes place," says the Count, "the native female is found to lose the power of conception, on a renewal of intercourse with a male of her own race, retaining only that of procreating with the white men.'*

"This, if a general fact, contrasts remarkably with Dr. Simpson's case, above-mentioned, (one of fruitful connection between a white man and a white woman, after previous impregnation of the latter by a black man,) unless, indeed, this be, which probably it is not, an exception to an equally general fact of the same sort. It would limit, also — nay, absolutely exclude — opportunities of observing whether children born of dark parents, where the mother formerly had issue by a European male, exhibit traces of the latter. But it was before stated, (p. 1135,) on the authority of two gentlemen long resident in Jamaica, that, in our West India colonies — in Jamaica, at least — fruitful connections of this kind are of common occurrence (which I mention at present as in keeping with this) on the authority of Dr. Boyce, that, in children born under such circumstances, marks of the European have been observed. Special inquiry, made recently, has served so far to confirm these statements, but not to satisfy me that the issue of such connections is numerous.

"The opportunities, however, enjoyed by the Count de Strzelecki, of making observations as to this point, in most parts of the New World, have been very great. 'He has lived much (to use his own words) amongst different races of abori-

* Physical Description of New South Wales and Van Diemen's Land, p. 347.
gines,—the natives of Canada, of the United States, of California, of Mexico, the South American Republics, the Marquesas, Sandwich, and Society Islands, and those of New Zealand and Australia. And, referring to the statement made by him, and already quoted, the Count observes—'Hundreds of instances of this extraordinary fact are on record in the writer's memoranda, all recurring invariably under the same circumstances, amongst the Hurons, Seminoles, Red Indians, Yakies (Sinaloa), Mendosa Indians, Araucos, South Sea Islanders, and natives of New Zealand, New South Wales, and Van Dieman's Land; and all tending to prove that the Sterility of the female, which is relative only to one and not to another male, is not accidental, but follows laws as cogent, though as mysterious, as the rest of those connected with generation.'"

On the Extraction of Foreign Bodies. By Johann Friedrich Dieffenbach. (Concluded.)

The removal of foreign bodies which have penetrated the textures.

1. The extraction of foreign bodies from wounds, or from suppurating canals.—A vast multitude of instruments have been contrived for the removal of foreign bodies from the living organism,—a manifest proof of the difficulty and importance of the procedure. Most of these apply to the removal of bullets, by far the most momentous. They are chiefly forceps, scoops, or hooks, and also gimlets, for boring holes into those imbedded in bone, in order to facilitate extraction. Many are useful, many superfluous, and others detrimental. The simple are the best.

The most eligible ball-extractor, according to my experience, is a straight, uniformly round, strong forceps, fashioned like a straight polypus-forceps. Its branches and handles must be longer, and its thickness more than double that of any polypus-forceps, that it may not break. It must, for the same reason, be without perforations, its inner edges armed with strong teeth; externally, finely polished, so as not to irritate the raw surface.

In addition to the forceps, the surgeon ought to be provided with two bullet-scoops, a strong silver probe, a large syringe, a probe-pointed bistoury and blunt hooks.

The patient ought to be put in the same position as that in which he received the wound, otherwise muscular fibres, fasciae,

* Physical Description of New South Wales and Van Dieman's Land, p. 315.
tendons, get misplaced, and tend to perplex the passage through which the projectile entered. Should inflammation have assailed the wound, it must be treated in the usual way, and no operation attempted till its subsidence.

The act of exploration demands the utmost foresight, all noise being excluded, so that the surgeon may clearly distinguish what the probe strikes against. If the ball is to be felt plainly, it is to be extracted. The forceps, smeared with oil, are introduced shut, opened when they reach the ball, made to catch hold of it, and, with a few gentle turns, gradually withdrawn. Care must be had not to injure the sides of the wound. Sometimes the ball may seem to be deeply seated when really near the surface, and vice versa.

The dilatation of the canal or tube formed by the track of the ball is, in general, highly prejudicial; but the wound in the integument may be dilated when it will not admit the forceps. The position, that a gun-shot wound should be transformed into an incised wound, is false; to enlarge the wound is to increase the danger. Only in the instance of great extravasation, of loose portions of bone, or of shells, or accumulations of pus, is dilatation permissible. If the ball has penetrated a bone, and cannot be got away with forceps, it may be eased out with a gouge. The suggestion of using quicksilver, to form an amalgam with the lead, is most objectionable.

If there be no immediate prospect of removing the ball, all further attempts should be postponed until suppuration is established, when they may be renewed with some likelihood of success. Frequently, balls heal up within the bone, are overgrown with osseous deposit, or else encysted in the soft textures.

In other cases, the ball separates of itself and comes away after the lapse of months, when the tube has been rendered wider by the process of suppuration, the fat and muscles absorbed, and the patient has accustomed himself to lie upon the corresponding side.

Occasionally, the ball cannot be found. It may have deviated from its track, swept round a bone, or taken a totally different course than could have been expected from the direction of the tube. Under such circumstances all interference is futile. Are there two openings in a limb? The lesser is the inlet; the greater, the outlet. Of course probing is out of the question, for the ball is escaped. But yet, despite of two openings, a ball may be present. I was called in consultation with Dr. Casper, to a young Russian, who had shot himself. There was an opening on the chest anteriorly, and another on the back, both of the same size. At the cadaveric inspection, a bullet was found in the thoracic cavity. The pistol, therefore,
had been loaded with two balls. Of these, one had passed through, while the other remained. Should the ball be lying beneath the integument on the opposite side, all groping in the tube formed by its track is improper; nothing more is needed than to make an incision through the skin and extract it. Bony splinters ought to be left until detached; otherwise dangerous bleeding may result. If the bone is fractured, no search should be made. Wounded arteries must be secured with ligature a little above the wound, which is not to be disturbed. Portions of wadding are to be removed with hooked forceps, ball-drawers, or bent hooks. It may be laid down, however, as a general rule, in all the above cases, that the less interference the better.

When balls are driven into the surface of the skull, they may be loosened with a chisel or with Heine's saw; when the inner table is perforated, and the bullet wholly or to a great extent forced inwards, the aid of the trephine will be required for its withdrawal. The surgeon ought not to go in quest of bullets lodged within the chest or abdomen; he may, if accessible, remove them from the wound, but make no attempt at dilatation. Afterwards, the edges should be carefully brought together and retained in apposition by strips of adhesive plaster and a compress, even although other foreign bodies be infixed.

The extraction of balls, grape, and the like, from the cavity of a joint or the head of an articulation, is attended with much difficulty, and only admissible when the ball will readily yield, as amputation is generally indispensable before the occurrence of inflammation.

Small pistol-shot, deer and hail-shot, do far less mischief than those of greater diameter. They either perforate the limb, or remain and are healed in the flesh. They ought to be removed only after recent injuries, when they can be easily laid hold of with dressing or polypus forceps. Hail-shot may be left alone, if deeply inserted; but if superficial, picked out with a curette.

Angular fragments, as those of bombs and grenades, chopped lead and nails, splinters of the carriages of cannon, or of ships (during sea-fights,) cause the most complicated lacerations, and their excision by dilatation is as urgently indicated as the opposite, or passive plan, in the instance of smooth spherical shot. In every case, the incision is to be made in the longitudinal axis of the limb, in the course of the muscles, nerves, and blood-vessels, preparatory to the removal of the extraneous substance, which must be done with extreme circumspection.

Sharp-pointed bodies, as the ends of swords, nails, and the like, are more readily extracted than bullets, because more
freedom may be used in incising the wound, and in tracing with the probe. For this purpose a dressing forceps is alone requisite. I have often been at considerable pains in removing the points of rapiers which had entered the body during duels. A portion of a two-edged sword, the length of the finger was once carried with such vehemence into the body of one of the lumbar vertebrae from behind, that, although the broken end protruded, I was obliged to use great exertion to remove it. The wound got well without any untoward symptom.

Arrows driven into the body, armed with barbs, barbed hooks, or other metallic hooked implements, are to be taken out in the same way as they entered, after previous dilatation by means of a cutting instrument. If the missile has reached the opposite side, a counter-opening may be made for its exit.

Needles, whether entire or broken, which have penetrated the flesh, need no extensive section for their removal. If the needle is lying lengthwise, I usually force it out by its point without cutting, namely by simply pressing up the skin with my fingers against the two ends. So soon as the point makes its appearance it is grasped with forceps, and the whole withdrawn. I thus extracted a large needle from a lad, which had passed through the urethra backwards to the neck of the bladder. The patient having been placed as in the operation for lithotomy, I inserted one finger into the rectum, exercised counter-pressure with the fingers of the left hand upon the gut, and, having brought the point into view, plucked out the entire needle with forceps. Should the needle not be discovered after incising the integument, and careful probing, the wound must be left to suppurate, and further trials made during the employment of poultices.

Fragments of glass or porcelain ought to be removed forthwith by incision. As the external wound is, for the most part, complicated, incisions cannot do harm. Great delicacy is required so as not to crush the broken fragment with the forceps during extraction. Suppuration is to be afterwards promoted, lest any particle be left and prove a future source of nervous irritation.

Grains of powder must be picked out with a full-sized catarract needle, or with the point of a fine scalpel.

In the instance of poisoned wounds excision is the only sure course. If impracticable, the parts should be bathed with tepid water, freely scarified, set to suppurate, or covered with poultices medicated with solution of caustic potash. After the bite of a rabid animal, energetic suppuration ought to be kept up by the agency of powdered cantharides, applied topically, ointment of the same, and, subsequently, mild resinous dressing.
The cauterization of poisoned wounds is a most objectionable practice, inasmuch as the resulting dry eschar serves to retain the poison in the system.

2. The Removal of foreign substances healed up within the body.—In cases of this kind, where no annoyance is created by the presence of the foreign body, the best plan is to let it alone. Where, on the other hand, accidents arise, either from its pressing upon a nerve, or from its approaching a joint and impairing its mobility, or from its beginning to cause shooting pains, measures ought to be taken for its removal. A ball often makes its way to the opposite side to which it entered, and can be there distinctly felt.

The patient is to be placed in a recumbent posture, and so adjusted as to relax the muscles of the part implicated, that the surgeon may be enabled to feel the ball. Should he fail in doing so, but perceive, on pressing some suspicious spot, that considerable pain is complained of, let him plunge a pin, such as is used for transfixing insects, the length of the finger down through the flesh. If resistance is felt in a situation remote from bone, and a sound emitted on a gentle tap being given with a small hammer, he may rest assured the ball is there, and will not have to operate in vain. I have in this way discovered balls very deeply inbedded.

The patient being properly secured, the incision may be carried the length of two inches, if the ball be near the surface; but, if profoundly lodged, as in the thigh or buttock, it may extend to three or four inches, always following the course of the muscular fibres, blood-vessels, nerves, and tendons. In the proximity of joints, the cut need not be larger than will admit a straight polypus forceps. It will often prove advantageous to make, with a small narrow knife, a minute incision several inches below the articulation and below the ball, thereby form a punctured channel, and remove the ball according to the subcutaneous method. The utmost caution, however, is necessary so as not to open the capsule of the joint, or injure the vessels and nerves.

Should a ball create disturbance after a lapse of several years, this is probably due to necrosis or caries. Here the surrounding parts will be inflamed and swollen, and the indication not to disturb the ball, but to further suppuration by means of hot poultices. When this is established, an incision may be made, the ball extracted, and suitable treatment adopted.

A foreign substance which has tarried long in the organism becomes invested with a tough capsule. This ought to be slit across, and after the withdrawal of the ball its posterior wall divided, and sides freely scarified, as being little susceptible of
inflammation. When these precautions are not attended to, a cavity is left after the closure of the wound, which may form a secreting surface, and lead to troublesome consequences, at any rate, to re-opening of the wound.

I have repeatedly, by the aid of small incisions and forceps, extracted from the hairy scalp the teeth of horn and tortoise-shell combs, which had remained fixed beneath the skin for years, and caused much inconvenience; in like manner, rusty needles, from various parts of the body, which had got broken by the action of the muscles.

Sharp-pointed substances, as fragments of nails or glass, when infixed in the soles of the feet, the palms of the hands, or the bends of the fingers, are apt to occasion much distress. I removed from the sole of the foot of an English officer a long splinter, of glass, which had been healed in, and caused a deal of suffering. It is often necessary to excise, at the same time, hard prominent star-like scars, in order to restore the integrity of the part, and more efficiently remove the extraneous substance. A young girl, who was afflicted with epileptic fits, spasmodic contraction of the arm, with wasting, had a number of irregular cicatrices in the hand and bend of the fingers, which were simultaneously drawn together with and through the spasms. It was stated that she had fallen upon her hand among glass many years previously. Expecting to find splinters, I dissected out of the cicatrices, and discovered, in the firmest of the number, a slip of glass resembling a fish scale. This had evidently determined all her ailments, for the epilepsy and spasmodic contraction ceased, and she recovered the perfect use of the limb.

3. The extraction of fragments of dead bone.—The interference of surgery is seldom required until the necrosed bone is separated from the adjunct parts by a distinct line of demarcation internally. Much benefit will be derived from judicious medical treatment. Thus tonic remedies, in conjunction with phosphoric acid, and also alkaline baths and poultices to favour exfoliation, and induce liquefaction of the callous integuments, will be found highly serviceable. When the bony particles get loose, perforate or project beneath the skin, their removal may be accomplished by a small incision. More persons, however, have lost their lives or their limbs by premature attempts to remove dead, or partially dead, pieces of bone, than have been relieved by such operations. The process of necrosis requires, at least in the instance of the large bones, years for its termination, as regards unhealthy individuals. All efforts to accelerate merely tend to retard, nor are they exempt from danger to patients reduced by protracted disease. If the sequester held
only by the soft parts, keeps up inflammation and abscess, it will be right to divide the skin, or dilate a pre-existing aperture, and then seize the bone at one end with forceps and withdraw it. In general, the necrosed fragments of the superficial layers get uplifted by the granulations at the base, and compress the skin, which is thereby attenuated and easily ruptured. During the chronic progress of necrosis of an entire long bone, of which the articular ends pass into the recent structure, the old dead portion is so firmly increased, as not to be readily thrown off. Here patient forbearance is requisite. The out opening may be dilated with sponge tents, and trials instituted to bring away piece by piece; and small bullet forceps, similiar to polypus forceps, or a gimlet, employed, provided the fragment is loose. If the osseous cavity be extensive, the dead portions may be either extracted or crushed by means of a lithrotrite. I have more than once excavated a sequestr, half as long again as the finger, from its recent bony envelope in the tibia, without previous dilatation of the cloaca, by the help of a watchmaker's drill, to which a tubular trephine, of the size of a swans quill, was attached.

As in the cylindrical bones, so likewise in those of the cranium, are all manœuvres to get rid of dead fragments with saw or chisel contra-indicated. Exposure of the necrosed part by a linear cut, where the bone is no longer protected externally by periosteum, is the sole operative procedure to be sanctioned; even a crucial incision is too much. Under the employment of moist warmth, exfoliation is more rapid than in the case of the long bones.

Directions for using the Nitrate of Silver in the Cure of Inflammation, Wounds and Ulcers. By John Higginbottom, F.R. C. S.—(London Lancet.)

"Never is Surgery so beautiful, and brilliant, as when obtaining a cure without the destruction of any organ, without plunging the bistoury into quivering flesh, and without causing the effusion of blood."—Lisfranc.

After twenty years' further experience in the application of the nitrate of silver in the cure of inflammation, wounds and ulcers, I am desirous of giving full and clear directions for the use of it, particularly as the proper mode of application is quite essential to secure its good effect. I have preferred doing this rather than giving cases in detail, of which I could have readily produced a volume annually.

There is no form of acute superficial inflammation, arising from either constitutional or mechanical causes, where the
nitrates of silver may not be applied with great safety and advantage.

The observation of the celebrated John Abernethy is true with respect to the application of the nitrate of silver—"Subdue local irritation, and regulate the action of the digestive system, and you control all controllable disease."

The great obstacle to the general and free use of the nitrate of silver, even at the present day, appears to arise from the impression on the minds of many surgeons that it is a caustic, a destructive agent. If they could be divested of that idea, and use it as freely as they would a common blister of cantharides, their fears would soon subside, from repeatedly observing the safety of the application, and also its beneficial effects. In my own practice I have always considered it a safer remedy than cantharides, as it may be applied freely over a surface, even where very active inflammation exists, or where there is an extensive surface denuded of its cuticle. This remedy has also the advantage of not affecting the bladder, or producing stranguary.

The nitrate of silver is not a caustic, in any sense of the word. It subdues inflammation, and induces resolution and the healing process. It preserves, and does not destroy, the part to which it is applied. If we compare a caustic, as the hydrate of potassa, with the nitrate of silver, we find that the hydrate of potassa destroys and induces a slough, and the ulcerative process; but if we touch a part with the nitrate of silver, the eschar remains for a time, and then falls off, leaving the subsequent parts healed.

If an ulcerated surface, secreting pus, be touched by the nitrate of silver, the succeeding discharge is immediately converted into lymph; it is the property of the hydrate of potassa, on the contrary, to induce not only ulceration but suppuration. In short, the peculiar properties of the nitrate of silver have long been kept unknown to us by the designation of lunar caustic, affording the most striking instance of the influence of a term, or of a classification, upon the human mind. The nitrate of silver and the hydrate of potassa (as indeed all caustics) are as the poles to each other; the first preserves, the second destroys; the first induces cicatrisation, the second ulceration.

I have for some years past used the nitrate of silver in solution, as well as in the solid state, finding the concentrated solution more convenient for application, where the nitrate of silver has to be applied on a considerable surface, as in erysipelas, &c. The following is the formula I have of late used:—Nitrate of silver, four scrupules; distilled water, four drachms. Put the nitrate of silver into a half-ounce bottle, add the distilled water;
the nitrate of silver will be dissolved in a short time, and if rightly prepared the solution will be clear and transparent; this quantity may be kept conveniently in the pocket of the surgeon, for daily use. The solution may be applied with a small piece of sponge, an inch in length, and one-third of an inch in breadth, stitched on the eye at the end of a common silver probe; this makes a most convenient instrument, which may be kept in the pocket case; it is not only useful for external inflammation, but can be used to internal parts of the throat, &c. Precaution should be taken to wash the sponge well with water after using it.

When the solid form of the nitrate of silver is used, it is necessary to moisten the surface to which it is applied, slightly, with pure water, and apply a long stick of the nitrate of silver flat upon the moistened surface, taking care that it be applied to every affected part.

It is necessary, for the successful application of the nitrate of silver, that the surface of the skin be free from any oleaginous matter, loose cuticle, or any other extraneous substance; the parts should be well washed with soap and water, and afterwards with water alone, to remove any particle of soap remaining.

It is essential to know the precise effect of the nitrate of silver, in the different degrees of its application. If the nitrate of silver be passed once slightly over the moistened skin of any part, except the hands or soles of the feet (upon which the cuticle is thicker than elsewhere), it induces an eschar, simply; if it be passed over the surface twice or thrice, to the eschar will be added some vesication; if more still, there will be vesication only. In the first place, there will be no pain; in the second and last, there will be soreness proportionate to the degree of vesication.

It is essential to the success of this plan of treatment, that these observations be kept constantly in view.

I shall now describe the mode of application of the nitrate of silver in the treatment

Of recent Bruised Wounds of the Skin, &c.—In recent bruised wounds of the skin, the nitrate of silver should be applied on the wound, taking care to leave no spot untouched, and upon the surrounding skin, to the breadth of one-third of an inch, in such a manner as to induce an eschar, without vesication. Any moisture which may remain upon the wound is then to be removed by gently wiping the part with a little linen or lint, and the skin surrounding that in which the nitrate of silver was applied is to be moistened, and covered with goldbeater's skin, so that the whole may be protected from accident;
the parts are then to be kept cool, free from covering, and exposed to the air.

This is usually all the treatment required in this kind of injury. It will be generally found, that an adherent eschar is formed, and that no further application or attention is required, excepting in old people, in whom the skin is sometimes irritable from various causes; in this case, a little fluid will form under the edges of the eschar, and will require to be evacuated by a small puncture, the gold-beater's skin being removed for this purpose, and then re-applied.

If the eschar be removed by accident at any time, the application of the nitrate of silver must be repeated as before. If due care be taken to avoid this kind of accident, it will not in general be found necessary to enjoin rest.

Of Small Ulcers.—The same method of applying the nitrate of silver may be used in small ulcers as in bruised wounds, particularly in exposed situations, as on the face, head and hands; in these situations the eschar often becomes adherent from the first application, but should the first attempt fail, and the eschar be unadherent, from fluid forming under it, a poultice of bread and water should be applied, for eighteen or twenty-four hours, to remove the eschar; when this is done, it should be treated as in large ulcers, hereafter directed, which generally effects a cure with one or two applications.

Of Large Ulcers.—I have abandoned the attempt of healing large ulcers by the unadherent eschar, on account of the inconvenience and trouble attending the evacuation of the fluid from beneath the eschar, which is daily necessary to insure an adherent eschar.

The best treatment is as follows:—Apply the nitrate of silver twice over the ulcer and surrounding skin, then cover the ulcer with a piece of black lint,* and upon it a plaster of neutral ointment,† spread rather thick on linen, a compress of linen, and a calico roller lightly applied to secure the whole. This plan is attended with much less trouble, and requires the attention of the surgeon only every third or fourth day. The same remark may be here made of ulcers as in inflammation, which is of great practical importance respecting the action of the nitrate of silver, that its influence is exerted for three days in an active

* Black lint:—Nitrate of silver, two drachms; distilled water, four ounces. Mix, and make a solution. Saturate an ounce of fine lint in this solution; then let the lint be exposed in a flat, shallow vessel, to allow it to dry by evaporation.
† Neutral ointment:—Lead plaster, eight ounces; olive oil, eight ounces; prepared chalk, four ounces; distilled vinegar, eight ounces. The acetic acid and the chalk must be well mixed in a mortar, and the lead plaster and the olive oil, previously slowly melted together, are to be added. The whole is then to be stirred together until cool.
state, and declines on the fourth; on that account, any intermediate dressings are unnecessary. In small ulcers, a second application of the nitrate of silver in substance is often not necessary, as the black lint, by absorbing the moisture, becomes firmly adherent, and remains on the ulcer until it is healed; if not healed when the lint comes away, a repeated dressing every fourth day, of black lint; neutral ointment is required.

Of old Ulcers of the Legs.—Old ulcers of the legs have long been the opprobrium of surgery, and I recollect the following remark made in one of our periodical works soon after the publication of my essay on the Use of the Nitrate of Silver, that “Old ulcers of the legs in 1830, would be old ulcers of the legs in 1840;” that no improvement would be made in the surgical treatment.

After the lapse of nearly twenty years, I am led to conclude that there has been a very manifest improvement in that department of surgery—not so much by the permanent cure of old ulcers of the legs by the use of the nitrate of silver as I anticipated, but by what is far better—the prevention by the early use of that remedy.

I have no doubt that if these directions for the treatment of external inflammation, in bruised wounds, and also that of recent ulcers, with the occasional assistance of graduated pressure, were followed, we should seldom have severe cases of old ulcers of the legs.

From my own observation and inquiry, I am led to believe that they have materially decreased in number in this locality, both in hospital and private practice; indeed, so much so, that if I were to commence my treatment as I did twenty-four years ago, I should have great difficulty in finding one half the cases I then readily obtained, notwithstanding there is an increase of one-third more of inhabitants.

Of Ulcers attended with Inflammation.—If ulcers attended with inflammation should occasion constitutional disorder, I would prescribe the patient an emetic of ipecacuanha, a calomel pill, followed by an active saline purgative; to apply a bread-and-water poultice, every eight hours, on the ulcer; and cloths, moistened with cold water, constantly over it and the inflamed part, as an evaporating lotion; and to keep in bed for twenty-four or thirty-six hours.

After this period, the treatment as directed for ulcers, with the nitrate of silver, black lint and neutral ointment, &c., may be generally pursued. Should there still be swelling or oedema arising from the ulcer, it will be necessary to enjoin absolute rest in bed, or under such circumstances the ulcer will not heal.

Of Punctured Wounds, Bites and Stings.—In recent punc-
tured wounds the orifice must be first examined. If there be any extraneous body within it, or loose skin surrounding it, they should be first removed. A drop of water should be put on the puncture, and the surrounding skin slightly moistened. The nitrate of silver is to be applied to the former, until some pain be experienced; and over the latter lightly, so as not to induce vesication. It should be applied to the skin for an inch round the puncture, and to a greater extent, if the swelling exceeds this space. The part is then to be exposed to the air.

These cases are generally adherent from the first application of the nitrate of silver; but I have sometimes found the eschar to separate from the wound before it has quite healed, owing to its conical form; it is then only necessary to repeat the application of the nitrate of silver slightly to complete the cure.

At a later period of punctured wounds, inflammation is usually present; the punctured orifice is nearly closed by the swelling, and a little pus or fluid has generally formed within. A slight pressure is to be applied to evacuate this fluid, a drop of water should be put on the orifice, and the nitrate of silver is then to be well applied within the puncture and upon and a little beyond the surrounding inflamed skin, as before directed, and the parts are to be exposed to dry. In this manner an adherent eschar is formed, and the inflammation subsides. If there be any vesication it may be simply left to nature; the fluid is soon absorbed or evaporated.

If there be reason to suppose that an abscess has formed deeply, it must be opened freely with the lancet, and the nitrate of silver is then to be applied on the cavity and on the surrounding inflamed or swelled skin. A poultice of bread and water and cold water as a lotion is then to be applied over the whole. The application of the nitrate of silver may be repeated every second or third day if the swelling or inflammation require it, and the cold poultice may be renewed every eight hours.

I have several times applied the nitrate of silver over an inflamed surface when I was not aware that suppuration had taken place. Even in these instances an immediate check was given to the surrounding inflammation, and relief to the pain; but two or three days afterwards there was increase of swelling attended by some pain, which is not usual, excepting when there is matter or some extraneous body underneath.

In these cases a free incision must be made with the lancet, and afterwards apply the nitrate of silver and cold poultice.

In doubtful cases, where suppuration may be expected, it is advisable to apply a poultice after the nitrate of silver, as the part may be in a fitter state, to detect any matter, than if a hard eschar be over it.
The bites of animals and the stings of insects have a speedy remedy in the nitrate of silver, if applied as directed in punctured wounds.

Of Wounds received in Dissection.—Previous to a post-mortem examination, as a precautionary measure, any sores or scratches on the fingers or hands should have the nitrate of silver applied to them to form an eschar.

After a post-mortem examination, wash the hands well in tepid water, then bathe them in salt and water, so that any small wound or abrasion may be detected by the smarting pain occasioned by its application: this is especially desirable after a post-mortem examination of abdominal inflammation and of puerperal patients, as a number of fatal cases have occurred from very slight wounds unobserved at the time. Every suspicious spot should be then moistened with a little water, and the nitrate of silver freely applied on the affected parts, and over the surrounding skin, to form an eschar. This plan will be a most effectual preventive of mischief in recent injuries.

If the puncture be deep it will be necessary to suck the part well first, then put a drop of pure water on the orifice of the puncture, and apply the nitrate of silver well, so as to occasion a smarting pain within the wound, and apply it lightly on the surrounding skin.

In the second stage, when the wound becomes painful or inflamed, and there is a tumor or elevation of the skin, the removal of the small tumor with the lancet, or a crucial incision must be made through it, and then apply the nitrate of silver on the wound, and on, and beyond, the inflamed and swollen parts; if on the following or subsequent days the inflammation spreads, the application of the nitrate of silver should be repeated; an ipecacuanha emetic, followed by a purgative, would be desirable, if the digestive organs are affected.

In the third stage, inflammation is rapidly spreading, violent constitutional symptoms are present, and the violent knocking pain in the head peculiar to this stage. Venesection, ipecacuanha emetic, followed by a purgative, two grains of calomel with two grains of James’s powder, every three or four hours, till the mouth is affected, appear to be the best treatment. The nitrate of silver should be applied freely on all the inflamed surface, and along the inflamed absorbents.

Wounds from the Bites of Rabid Animals.—I read a paper some time ago, in a work on veterinary surgery, where the writer mentions his entire confidence in the application of the nitrate of silver to the bites of rabid animals.

An objection has been made to the excision of the part alone, on account of the danger of the virus from the bitten wound.
being conveyed to the recent wound made with the scalpel. To avoid this, the parts may first be well washed with warm water, with the assistance of Read's, or any powerful syringe, to remove the saliva away from the wound; the nitrate of silver should be then freely applied within the wound, after that the bitten part should be removed with the scalpel, and afterwards apply the nitrate of silver again to the wound, making doubly sure of having the poisoned parts removed. The sores to be healed by eschar.

Of Lacerated Wounds.—After the wound has been well cleansed, and foreign matters removed, the nitrate of silver must be applied close upon the irregular edges of the wound, but not within the wound, and on the surrounding skin; afterwards the parts should be brought into approximation by straps of adhesive plaster, to be healed by the first intention. Should the laceration be considerable, the interrupted suture may be used with the same success and safety as in an incised wound, but the suture must be applied before the application of the nitrate of silver; the nitrate of silver should be applied on the edges of the wound, on the line of the wound, and on the surrounding skin; the parts should be supported by adhesive straps, without any other covering; the ligature may be removed about the third day, and the nitrate of silver applied to the small orifices left, to prevent any ulceration.

Great advantages are derived from healing wounds, particularly on the face, by the aid of the nitrate of silver.

1. It prevents the irritation arising from the irregular edges of a lacerated wound; adhesive inflammation takes place, and the wound is healed by the first intention, as in an incised wound.

2. The inflammation, swelling and irritative fever, consequent on lacerated wounds, are in a great degree prevented, and there being no ulcerative process, there is no loss of substance, so that unsightly scars and raised cicatrices are prevented.

To arrest the Hemorrhage from Leech-bites.—Apply the point of a stick of the nitrate of silver firmly within the little orifice for a short time; then a small piece of black lint must be firmly pressed on the part with the finger for two or three minutes; by this means the bleeding is effectually stopped; the black lint becomes firmly adherent; adhesive inflammation is produced, and the lint does not separate till the leech-mark is healed.

Incised Wounds.—Apply the nitrate of silver slightly on the skin surrounding the wound, not within the wound, and bring the edges of the wound together with adhesive plaster, or uninterrupted sutures; by this means any subsequent inflammation or swelling of the skin is prevented, and the wound heals by
the first intention. In the operation for hare-lip, or in wounds on the face, adhesive inflammation is immediately produced by this treatment, and the cure safely effected. When the ligatures are removed, the small orifices remaining should be touched with the nitrate of silver, to prevent any ulceration.

Of Erysipelas.—In very slight attacks of erysipelas, sometimes an active purgative and low diet will be sufficient to remove the disease without the application of the nitrate of silver; but if constitutional symptoms are present, it is the safest plan to use both constitutional remedies and the nitrate of silver simultaneously.

The constitutional remedies, as the case may require, are venesection, emetic, purgative, and repeated doses of chloride of mercury and James’s powder. The nitrate of silver to be applied as follows:—Wash the affected parts well with soap and water, then with water alone, to remove any particle of soap remaining, afterwards wipe the parts dry with a soft cloth; then apply the concentrated solution of the nitrate of silver two or three times over the whole inflamed surface, and beyond it on the surrounding healthy skin, to the extent of two or three inches. In about twelve hours it will be seen if the solution has been well applied. If any inflamed part be unaffected by it, it must be immediately re-applied to it. Sometimes even after the most decided application of the nitrate of silver, the inflammation may spread, but it is then generally much less severe, and it may be eventually checked by the repeated application of this remedy.

It is desirable to visit the patient every twelve hours, till the inflammation is subdued.

By this means we have a complete control over the disease. If the erysipelas is attended by vescication, the vesicles should be broken and the nitrate of silver applied on the denuded, inflamed parts; but if the vesicles arise from the use of the nitrate of silver, they may be allowed to remain undisturbed.

In erysipelas of the face, when it is spreading on the forehead, or at all on the scalp, the head should be shaved as early as possible, that the extent of inflammation may be traced on the scalp, which often can only be detected by pain, or by oedema being felt on pressure with the finger. The solution requires to be applied very freely all over the scalp, where it scarcely or never produces vescication.

When the inflammation has been subdued by an early use of the nitrate of silver, the constitutional symptoms have been immediately relieved; the constitutional disturbance is directly aggravated by the least increase of local inflammation, and in a few hours, after a decided application of the nitrate of silver,
the inflammation has been arrested, and gradually subdued, and with it the constitutional symptoms cease.

Even in idiopathic erysipelas, there is no period of the disease when I would not apply the nitrate of silver: I have never in any case seen metastasis or any other bad effect from the use of this important remedy; on the contrary, I think it the best local remedy to prevent such mischief.

On Phlegmonous Erysipelas.—An early application of the solution of the nitrate of silver alone will sometimes be sufficient to check the progress of the inflammation.

If the inflammation be severe, attended with swelling, and the subcutaneous cellular tissue be much affected, a number of leeches should be applied on the inflamed part, or small incisions made with a lancet; a bread-and-water poultice applied, until the bleeding has ceased, then the concentrated solution to be applied freely upon and beyond the inflamed parts, and afterwards covered with a plaster of the neutral ointment, if suppuration be anticipated; if not, the parts should be exposed to the air, to form an eschar.

If the leech-marks or incisions afterwards become painful or irritable, a slight application of the nitrate of silver will be required.

By the above method of treatment, the inflammation is arrested and subdued, the suppurative process often prevented, and long incisions unnecessary. Should the system be affected, ipecacuanha emetics, saline purgatives, and repeated doses of calomel with James's powder.

On Inflammation of the Absorbents.—Constitutional remedies are often required, as venesection, emetics, purgatives, &c., and an immediate attention to the origin of the disease. If from a foreign substance, it must be removed; if from an abscess, it must be freely opened; or from an irritable ulcer, the nitrate of silver should be applied to destroy the irritation. The nitrate of silver should then be applied, either in substance or the concentrated solution, freely upon the whole of the inflamed and swelled surface, along the lines of inflammation, and beyond them on the surrounding skin. By these means, in twenty-four hours, the disease is generally most effectually arrested in its progress, and the numerous abscesses, often occasioned by this kind of inflammation, prevented.

Phlegmonous Inflammation.—Pure phlegmonous inflammation will be often arrested and subdued by the early application of the nitrate of silver, without any other remedy; but if it has proceeded so far as to be doubtful whether suppuration has taken place or not, the inflammation will be arrested, and the suppuration more circumscribed and limited in its extent.
If the tumefaction and inflammation are not subdued in four days after the application, it will be found that suppuration has taken place, and that the use of the lancet will be required to open the abscess, after which the wound will more rapidly heal than if the nitrate had not been used. The cold poultice may be applied every eight hours, and the nitrate of silver every second or third day, as required.

Small Irritable Ulcers with Varicose Veins.—Fill the small ulcers lightly with scrapings of the black lint, and cover them with a plaster of the neutral ointment, and apply graduated pressure with a bandage on the leg; it often happens that an adherent eschar is formed after the first application; but if not, the remedy must be repeated every third or fourth day. A bandage or laced-stocking should be continued.

Burns or Scalds.—In the first class of burns or scalds, where there is superficial inflammation, and in the second where there is simple vesication without destruction of the cutis, the application of the nitrate of silver as directed in erysipelas, often effects a speedy cure; the vesicles should be removed, and the nitrate of silver be applied on the exposed cutis, to form an eschar. If future dressings are required, the black lint and neutral ointment may be applied every third or fourth day. Should the burn or scald be exposed to friction on any part of the body, a plaster of the neutral ointment applied, with a light bandage over it, will be necessary.

In burns from the explosion of gunpowder, particularly on the face, the mode of healing by eschar with the nitrate of silver is very successful.

Gangræna Senilis.—An early application of the nitrate of silver is indispensable to give a chance of checking the progress of this dreadful disease. It has been used with decided success when the toes have assumed a dark color, and become a little swollen with purple vesications on the lower and outer part of the leg. The solid nitrate of silver may be applied (the affected parts being previously moistened with water) freely on the affected toes, and lightly on the surrounding healthy skin; and also on the denuded skin after the vesicles have been removed, so as to form an eschar. If successful, the eschar becomes adherent, the inflammation is subdued, and all further mischief prevented. In due time the eschar will be thrown off, leaving the parts underneath healed.

It will be desirable to give purgatives, and adhere to an anti-phlogistic regimen during the cure.
Contributions to the value of Chloroform. By R. P. Stevens, M. D.—(N. Y. Journ. of Med.)

In the July number of the Journal I published a contribution to the value of chloroform in natural cases of midwifery. When a new agent is introduced to the notice of the medical profession, one naturally wishes to test the range of its capabilities to subserve the interests of that profession. If it professes to be the friend of the physician in alleviating the sufferings which he is called to minister unto, to test how far its friendship extends, and where it ends.

The first disease which I propose to report its favorable use in, is a case of Nervous Dyspepsia, of some eighteen months standing. Mrs. S., of a nervous temperament, æt. 33, had frequently suffered from this ennui-engendering disease. Her last attack was peculiarly obstinate, resisting the usual remedies, which in former attacks had procured relief; and the usual round of anodynes, antispasmodics, and tonics, either separate or combined. Hydrocyanic acid, of the strength of Scheele's formulæ, in large doses, would give some temporary relief. Her life was rendered miserable; her spirits much depressed, and this depression made her dyspepsia worse. Immediately upon the republication of Prof. Simpson's pamphlet, in Boston, I procured from that city some chloroform, and administered by inhalation about fifteen drops, upon a linen handkerchief, folded for the purpose. It produced but partial anaesthesia, but the dyspepsia disappeared from that time, and has not returned, a period now of nearly two years.

Three cases of Furuncula cured by the application of a dosil of lint saturated with chloroform. One of these diminutive, but exquisitely painful tumors, was situated within the nasal orifice. It was speedily discussed, much to the delight of the modern Job.

Three cases of Asthma. One of a child, æt. four years. The sufferings of this little girl were truly terrific. She was stretched upon the floor; her head supported, countenance livid, eyes staring and glassy, the chest heaving laboriously, her brow bathed in a cold perspiration; her whole powers of body and mind seemed absorbed in laboring for her breath. Immediately exhibited eight drops by inhalation, which gave instant relief, equally as much to the surprise of the delighted mother, as to the comfort of the little sufferer.

The other two cases, were Mr. C., æt. 37, a confirmed wheezing asthmatic. Half his nights are spent in an arm-chair. A feather-bed is suffocation to him. The first trial of chloroform was in one of his ordinary attacks. The inhalation of
fifteen drops procured almost immediate relief, and in a few moments he was in a sweet sleep: he inhaled in a reclining posture, almost suffocated with his recumbent position. The second trial was when the attack was unusually severe, being increased in severity by taking a full dose of opium. It required thirty drops, thrice repeated, while sitting in his chair, to entirely relieve his respiration; soon after the second dose it became easier, more natural and fuller. The pulse denoted the effect of the chloroform upon the heart and arterial system, and he soon fell asleep, the first he had had in three days and nights. We gently bore him to his couch, and he had a sound sleep of nearly four hours, and awoke in the morning refreshed, leaped aboard a raft, and piloted it to Pittsburgh.

I have found it useful in Ondontalgia, by applying it to the cleaned cavities of the carious teeth, in irritable corns and bunions, and in chilblains.

In Neuralgia of the supra-orbital nerves, applied over the foramen by a saturated dossil of lint, covered with oiled silk, it procures instant ease.

In six cases of Cholera Morbus, attended with cramp of the muscles of the extremities and abdomen, chloroform, with camphor dissolved in it, has succeeded like a charm in arresting the convulsions, and relieving the pain.

It has sometimes needed to be repeated. It is a powerful solvent of camphor, and prevents this gum from distressing the stomach.

In one case of stercoraceous vomiting, in doses of thirty drops, thrice exhibited internally, it restored the peristaltic motion of the alimentary canal to its normal state, imparted new life to the circulation, heat to the extremities, and warmth and moisture to the surface. When received into the stomach it is an exciter to the heart and arteries, equally as prompt and decided as it is a depresser when inhaled. In the last case mentioned, the pulse rose from 32 beats in a minute, up to 70—from being feeble and flickering, to full, soft, and strong.

One case of sick head-ache. Mrs. S., subject to frequent attacks, oftentimes assuming a neuralgic character; vomiting gives no relief, but increases the pain; counter-irritation along the affected nerves also increases the pain. Morphine gives relief at the expense of a sick day following. Sleep, though but for a few moments in the initiatory symptoms, often allays the attack. Gave fifteen drops by inhalation; not producing the desired effect, through imperfect application of the napkin to her mouth, the dose was repeated. In a few moments, as soon as the pulse indicated the influence of the chloroform, she fell asleep, and awoke perfectly cured.

N. S.—VOL. VI. NO. V. 20
PART III.

MONTHLY PERISCOPE.

I. Bloodletting.—The conclusions arrived at are the following.
1. The duration of pericarditis increases in proportion as the time is longer between the commencement of the disease and the first bleeding. 2. The duration of the cases bled after the first four days is greater by one-half than of those bled within the first four days from the invasion of the disease. 3. The influence of bleeding was more marked in the case in which it was copiously and repeatedly, as well as early, practised, than in those in which blood was drawn less frequently and more sparingly. 4. Pericarditis is never extinguished at once by bleeding, however early or however copiously practised.
5. In several cases the pericarditis was suspended for a limited time. The suspension in every instance was immediately consequent upon the local abstraction of blood.
6. It is probable that renal has a longer duration than rheumatic pericarditis.
7. Bloodletting must be less copious, and is more frequently inadmissible, in renal, than in rheumatic pericarditis.
8. Bloodletting probably lessens the mortality, inasmuch as it lessens the duration of pericarditis; but direct proof of the reduction of mortality is not to be obtained from these cases.
9. The abstraction of blood by venesection, cupping or leeches, almost invariably relieved the pain at once, but not permanently. There is no reason to believe that any one form of bleeding relieved pain more effectually than another.
10. Bloodletting never lessened the frequency of the pulse, except when there were signs of the inflammation having abated.
11. The tendency to syncope in some cases of pericarditis, renders it necessary to be very careful in abstracting blood by venesection.
12. Free venesection for pericarditis does not always prevent the subsequent appearance of serious inflammation in other internal organs.

II. Mercury.
1. The cases in which mercury was given within the first four days, had an average duration less by five days than those in which it was given later.
2. The cases in which salivation was produced within the first four days had an average duration less by two days than those in which it had occurred later.
3. It is difficult to determine how much of the benefit was due to the mercury, because all the patients who took mercury were likewise bled, and in almost every instance the two remedies were first employed on the same day.
4. The author is inclined to the conclusion, that the benefit was due in greater measure to the bleeding than to the mercury—partly because the duration of the disease was more abbreviated in those who simply began to take mercury than in those in whom salivation was produced within the first four days.
5. The administration of mercury coincided with the bleeding, but the salivation did not, and the results are just what
might be looked for upon the supposition that the benefit was due to
the bleeding, and not to the mercury. 5. If the production of sali-
avation had anything like the marked influence in arresting inflam-
mation, and in promoting the removal of its products, which it is currently
believed to possess, the duration of the cases of pericarditis after sali-
vation ought to have been much less than it really was. This is
proved by a detail of the cases. (a.) Salivation was not followed by
any speedy abatement of pericarditis in sixteen cases. (b.) Salivation
was followed by pericarditis in five cases. (c.) Salivation was follow-
ed by an increase in the extent and intensity of the pericarditis in three
cases. (d.) Friction-sound ceased two days before the mouth became
sore in two cases. (e.) Salivation was followed by a speedy diminu-
tion of the friction-sound in two cases; it did not cease, however, for
some days after. (f.) The pericarditis ceased soon after salivation in
two cases; in one of them, however, it had been declining for some
days before. (g.) Mercury was given, but no salivation was produced
in seven cases. (h.) No mercury was given, nor other treatment
adopted in eight cases. (i.) Cases are detailed exhibiting the occur-
rence of various internal inflammations during the time that salivation
was proceeding. The cases comprise examples of endocarditis, pleuro-
pneumonia, pneumonia, pleuritis, erysipelas, and rheumatism.
A conclusion rather adverse to the antiphlogistic powers of mercury
having been drawn from the facts narrated, the author next examines
the evidence upon which the contrary and more prevalent opinions is
based, and infers that the evidence is not satisfactory.

Treatment of Scarlatina by hot-water applications. By F. A. Bul-
ley, Esq. (Med. Times. Braithwaite’s Retros.)—Mr. Bulley de-
scribes a mode of treatment which he has adopted and found successful
not only in scarlatina, but in every instance of febrile disturbance that
has come under his observation within the last few years. He gives
as an illustration the case of a farmer, who, after several days of pre-
monitory symptoms, became covered with a rash. The next day Mr.
Bulley was sent for, and found his patient labouring under an attack
of scarlatina, which he (Mr. B.) believed would prove a very severe
one. The following treatment was adopted:

The patient was placed upon a bed, on which, the sheets having
been removed, two blankets had been laid, then a flannel pad, compos-
ed of four thicknesses of coarse household flannel, sixteen inches long
by ten inches wide, stitched round the margin to keep it together, and
wrung out of hot water till almost dry, was laid as hot as he could bear
it upon the pit of the stomach and over the region of the heart; and
while it was still warm, the blankets, one by one, were carefully
folded round his body, so as to completely confine the perspiration and
heat, which might be generated by this process; at the same time,
another pad of two thicknesses only of the coarse flannel, wrung out
of boiling vinegar and water, was placed round the throat for the relief
of the local inflammation. After he had remained enveloped in the
wrappings a little more than half an hour, during which time the fe-
brile excitement had been somewhat increasing, he burst into a profuse and general perspiration, in which he was allowed to remain for two or three hours longer, with an evident abatement of the symptoms, when the blankets were carefully removed, and the flannel pad withdrawn; after this, he had some refreshing sleep, and but little return of the burning fever; he was now ordered to take half a drachm of Dr. Stevens's saline powder in a mixture every four hours, and to use the following gargle to the throat:—R. Armenian bole; burnt alum powdered, aa. gr. 40; brown sugar, gr. 60; water 3/8vij. Mix.

This plan of treatment was so successful that on the seventh day from the first appearance of the eruption, the patient was going about his farm. Mr. Bulley makes the following remarks upon the treatment:

I have had the satisfaction to observe, that the simple method which I have adopted in the treatment of fever, and which I practised in the foregoing case, has never, in any trial which I have made of it, failed in its object. I have now used it in a great number of cases, some of them of the worst description, and in every instance where the process has been judiciously managed, it has either at once annihilated the fever, mitigated its severity, or diminished its duration. I have also found it extremely useful in cases of small-pox, in constitutions where the circulating power has been naturally so feeble as to be insufficient of itself to throw out the morbid elements from the blood by the skin.

Employment of Manganese in Anaemic and other affections. By M. Hannon. (London Jour. of Med. Braithwaite's Retros.)—Manganese and iron are almost constantly found united in the same minerals, and can be separated with difficulty. Again, iron is not always efficacious in chlorosis, and fails in curing anaemia arising from cancers, from tubercles, from prolonged and abundant suppuration, &c. In these cases, it cannot be the iron that is deficient in the blood, but some other ingredient; and it is probable that iron is united to manganese in the blood; and that cases of anaemia, unsuccessfully treated by iron, might be cured by manganese. M. Hannon first tried the effects of this agent on himself. He took at first a grain of the carbonate of manganese daily, increasing the dose to four grains by the end of the first week, and to eight grains by the end of the second. At the end of a fortnight, he experienced symptoms of plethora; the appetite increased, the pulse became stronger, and the colour of the interior of the eyelids was heightened. He then administered manganese to some anaemic patients; some of them experienced nausea for two or three days, after which the medicine was tolerated. In a short time, its beneficial effects became manifest in the increase of colour, in the fuller and more frequent pulse, in the energetic movements and general improvement of the functions.

The presence of manganese in the blood was discovered by M. Millon, who presented a memoir on the subject to the Académie des Sciences of Paris. His observations have been confirmed by M. Hannon.
Several illustrative cases are given. The first mentioned is one of extreme chlorosis, in which the patient was sent into country air, and took iron for some time, without benefit. We are told that the patient was then directed to take one of the following pills daily before breakfast, and another before dinner: Extract of cinchona, carbonate of manganese, of each a drachm. Mix and divide into four grain pills. After she had used these pills for a fortnight, the cheeks and conjunctivae regained their colour, and the swelling of the feet disappeared. The following pills were then ordered. Sulphate of manganese, carbonate of soda, of each a drachm; fresh charcoal, honey, of each a sufficient quantity to make a mass, to be divided into four-grain pills. A fortnight after the employment of this medicine, the bellows-sound had disappeared; the pulsations of the heart were strong and loud; and an energetic impulse was felt on applying the hand. There was no syncope; and the appetite had returned. The dose of the pills was increased; and a month after, menstruation occurred, and the patient became plump, and able to bear much exertion. She digested and slept well—in a word, was cured.

Another case is that of a young lady affected with phthisis:

Iron with opium was prescribed; but it increased the cough, and brought on obstinate constipation. Syrup of the phosphate of manganese was then given, with cod-liver oil; the latter being added rather to prevent the contact of air with the manganese, than from any expectation of its producing good effects. The constipation ceased; and the cough became more bearable, and ceased in a fortnight. The patient then began to recover embonpoint. A month after the knuckles assumed a very remarkable brick-red colour, which has continued up to the present time—a period of nearly a year and half. This patient took three gros (216 grains) of phosphate of manganese, in doses of three grains daily.

Madame R. was affected with cancer of the uterus. She complained of remittent pain in the hypogastric region, and suffered much while at stool. In the evening, she was troubled with severe lancinating pains, which often continued through the night. She was excessively weak, and of a pale yellow hue. She was troubled with palpitation, and a bruit was heard in the carotid. The feet frequently swelled. Syrup of the iodide of manganese was given with syrup of horse-radish, for several months. The pains did not leave her, but the anemic appearance completely disappeared. To calm the pains, opium, with extract of hemlock, was prescribed; and the patient became apparently cured.

Mademoiselle M., aged 14, of a scrofulous constitution, had glandular enlargement in the neck, ulceration of the transparent cornea of the left eye, and caries of the first phalangeal bone of the index finger of the right hand. Being the daughter of a peasant, she had lived exclusively on vegetable food; but was ordered to take meat, and to drink beer. Syrup of the iodide of manganese was given in doses of a spoonful two or three times a-day. Under the influence of this, and her improved diet, she became less lean; soon after, the cornea re.
gained its transparency, having been washed with a lotion containing gr. ss. of nitrate of silver to an ounce of distilled water. The suppuration of the carious bone ceased, and the finger was cured.

M. G. B., aged 28, had been treated with mercury for some years, for constitutional syphilis. The bones were sound; the skin was affected with all kinds of eruptions; the tongue had long been the seat of an obstinate tumour; and there were syphilitic ophthalmia and iritis. Fumigation and iodide of potassium were persevered in for several months, but without effect. Iodide of manganese was then given, with syrup of sarsaparilla; and in a month, the patient was completely healed. He was directed to continue the use of the manganese; and, as he has not since applied for relief, it is probable that he has had no relapse.

These cases have been selected from a number of similar ones, and shew the efficacy of the new remedy proposed. Manganese has in all cases produced a more rapid effect than iron, in cases of simple anaemia. In the forms of anaemia cited, all the cases had resisted iron, and all yielded to manganese. The other cases are respectively of phthisis, cancer, scrofula, and syphilis—all inducing almost irredeemable cachexia, and all rapidly alleviated by manganese. The effects of the manganese, as observed in one case, (phthisis) are remarkable. Iron seldom produces a similar result; if it improves the state of the blood, it increases the cough; so much so, that many practitioners abstain from its use in phthisical cases. In all the scrofulous cases, the iodide of manganese, by its salutary and rapid influence, was proved superior to the iodide of potassium. The persistence of the cures obtained by manganese, in comparison with those produced by iron, is very remarkable: no cases of relapse have been observed by M. Hannon. The quantity required to be taken, in order to produce the desired result, is far from being so great as that of iron.

On the Treatment of Hooping Cough. By M. Trousseau. (Journ. des Connais. Medico-Chirurg.)—M. Trousseau thinks favorably of the emetic treatment recommended by Lennec for the commencement of the disease; but for its subsequent stages he prefers belladonna to all other remedies. We give his views on this subject.

The belladonna should be given from the first in full doses, M. Bretonneau, says he, has remarked that a large dose of cinchona acts much more energetically when given at one time, than when double the quantity is taken in five or six doses. The same is true of belladonna. Experience has shown, moreover, that, as is the case with the datura, digitalis, etc., the powder of this plant is preferable to both the tincture and extract, even when these latter are prepared in the best manner. The powder of the root should be employed therefore, or if that cannot be obtained, the powder of the flowers, in the dose of
one centigramme, to a child from two to six years of age, according to the following formula:

Powder of the root, or flowers, of belladonna, 1 centigramme.
Pulverised sugar, 25 "

Triturate carefully. This dose is to be administered at one time, morning or evening, according as the cough is observed to be most troublesome in the night or during the day. After having kept up this treatment for two or three days, if there is any marked amendment, the belladonna is to be continued in the same dose; but if there is no improvement, the dose is to be doubled, and two centigrammes are to be given during three days. The dose may be even increased to three centigrammes, to be given always at one time. Moreover, the belladonna should be continued for twelve or fifteen days at least after the cessation of the cough; otherwise it might return with desperate obstinacy, and then the remedy, after having been suspended, would not yield the same advantages as in the first instance.

Here opium sometimes succeeds where the belladonna has failed. One drop of Rousseau's laudanum every day for three days might then be found serviceable.

After opium, digitalis may be used, in the dose of one centigramme of the powder, or one milligramme of digitalin. It will seldom be necessary to quintreple these doses; if these means fail, recourse must be had to antispasmodics, such as gum ammoniac, the sub-nitrate of bismuth, and the oxide of zinc.

A blister, or frictions, with croton oil, may be of service during the latter stages of the disease, or when it is protracted in duration.

Hemorrhages constitute a frequent and sometimes a very serious complication of hooping-cough. M. Trousseau has lately seen a child with hooping-cough sink under haemoptysis: this is of rare occurrence; but epistaxis, and sub-cutaneous and sub-mucous ecchymosis are more common. Children have been known to weep tears of blood. Epistaxis may be repeated so frequently as to cause in the little patient a state of anaemia. There is no better remedy in these cases than the Peruvian bark, given in doses of two or three grammes a-day. This remedy is equally successful in the epistaxis of adults. Rhatany is far from being equally useful. We may also use the dry extract of this article topically, or we may inject into the nostrils a solution of the sulphate of zinc or of copper. We may begin with a solution of five centigrammes of the salt to thirty grammes of distilled water, and increase the former gradually to a demigramme or even to one gramme.
Periscope.

Sulphate of Iron in Diabetes of Children. (Journ. des Connais. Méd. Chirurg.)—Dr. Heine, of Berlin, reports two cases of diabetes mellitus in young children, treated successfully with the sulphate of iron. The first case was a child of nine years. At the age of four years he had measles, and from that time was unhealthy. He was badly fed and clothed; feeble, emaciated, and melancholy. His appetite was irregular, and his bowels costive. He was attacked with fever every night, but received no medical treatment until the diabetes made its appearance, when his step-mother, annoyed by his urinating ten times in the night, applied to Dr. H., who detected sugar in a considerable quantity in his urine. Small doses of calomel, rhubarb, and magnesia, were given, and in the intervals, phosphate of soda, combined with ipecacuanha. All the symptoms were mitigated with the exception of the excessive secretion of urine. The calomel was discontinued, and the patient put upon the use of the sulphate of iron. He had not taken this medicine more than two days, when a decided improvement was observed. He urinated but twice in the night, and the urine presented no traces of sugar. The sulphate was continued five or six weeks, and the health of the child was completely restored.

The other case was a child of seven years, who had been in a state of utter destitution. He was much emaciated, his bowels constipated, without appetite, and a prey to continued fever. He also labored under a profuse saccharine diabetes. Dr. H. gave him the sulphate of iron in half grain doses, combined with rhubarb. A rapid amelioration took place. In about five days the urine was much diminished, and at the end of eight days, it contained no sugar. The cure was perfected in four weeks.

Sulphuric Ether topically applied to atonic ulcers. (Bulletin de Thérap.)—Prof. Bouisson recommends the topical application of sulphuric ether as a valuable means in the treatment of atonic ulcers. Employed in this mode, the ether, independently of its sedative properties, produces a tonic effect, due to the refrigeration which results from its rapid evaporation; it also dries the humid surfaces with which it is brought into contact. Prof. B. has recently treated two cases, the one for an ulcer of the thigh, resulting from a bruise, and of two months standing—the other from an ulcer in the abdominal region, primitively of a venereal origin, which had resisted all external and internal treatment. The application of lint wet with the sulphuric ether, three times a-day, effected a cure in fifteen days. This treatment is very simple, and should be tried when the ordinary treatment proves unsuccessful.
The Bark of the Khaya Senegalensis as a substitute for Cinchona.—
The Journal des Connaissances Medico-Chirurgicales, for January, contains the following description of the Khaya Senegalensis, commonly known as the Cinchona of Senegal, by M. Cavento.

The Khaya Senegalensis, (Swietenia Senegalensis,) one of the largest and most beautiful of the trees which adorn the banks of the Gambia, and the Peninsula of Cape Verde, belongs to the family of Meliaceae.

The febrifuge properties of the bark of this tree, noticed some time ago by MM. Merat and De Lens, and also by M. Guibourt, have obtained for it the name of the Cinchona of the Senegal.

The bark of the Khaya Senegalensis is about 15 millimetres in thickness; grayish, rough and hard, externally; under the epidermis it is of reddish, yellow colour, which becomes lighter in proceeding from without inwards. It develops, when chewed, a decided bitterness, has a clean fracture, is close grained, and presents in its longitudinal direction white lines, which become more close and numerous as we proceed from the bark toward the centre.

M. Caventou has analyzed this bark, and has obtained from it a new organic principle to which he has given the name of cail-cedrin.

This is a yellowish, opaque, non-crystalline body, of a resinous appearance, of a bitter aromatic taste, and is but slightly soluble in water.

A trial of this article, made at the Hotel-Dieu, by MM. Moutard, Martin and Chomel, seemed favorable to its employment in intermittent fever. M. Caventou himself admits, however, that it demands further examination.

But as those who live on the banks of the Senegal cure themselves when most violently attacked with fever, by using the decoction of Khaya bark, it is to this that the first clinical researches should be directed.

Vegetable Charcoal. (Journ. des Connais. Méd. Chir.)—M. Patisnier, on the part of MM. Récamier, Caventou, and for himself, read the following additional conclusions of a report previously communicated to the Academy on a memoir concerning the use of vegetable carbon in gastro-intestinal nervous affections, both idiopathic and symptomatic, by Dr. Belloc, surgeon-major to the 6th regiment of hussars.

These results, said he, from the chemical facts mentioned in the memoir of M. Belloc, and from those which your committee have been able to gather, are:

1st. That pulverised charcoal prepared from the common poplar,
may be used with advantage in the treatment of nervous affections of
the stomach and intestines; that its therapeutic effects do not differ
materially from those of charcoal obtained from light and porous wood
(white willow, fir, larch, etc).

2d. That these powders are only really valuable when administered
in large doses, four or five tea-spoonsful a-day, to be taken before or
after meals.

The committee think that M. Belloc has rendered a service to prac-
tical medicine, by directing the attention of physicians to the ther-
peutic value of vegetable charcoal. Your committee propose that
you address a letter of thanks to this excellent brother, and place this
memoir in the archives.

Anti-asthmatic pills de M. D'Avonie. (Journ. de Méd. Connais.
Med. Chirurg.)—M. D'Avonie recommends pills made according to
the following formula, as uniformly efficacious in asthma, whether
idiopathic or symptomatic:

B. Venice soap, 4 grammes.
 Gum ammoniac,
 Fresh squills,
 Socatorine aloes,
 Bals. copaiba, q. s.

\[\text{aa} \] 2 grammes.

Make into pills of four grains each. One pill to be taken every two
hours.

For Alopecia. (Bulletin de Thérap.)

Ointment of cocoa, (cocoa butter 2 parts, olive oil 1 part,) 60 grammes.
Tannin,
Quinine,
Dissolve in aromatic alcohol, (alcoolat aromatique,) 8 grammes.

Make an ointment. To be used night and morning.

New Febrifuge Pills. (Journ. de Méd. de Toulouse. Bulletin
de Thérap.)

B. Willow bark, 10 parts.
 Capsules of common lilac (syringa vul.)
 Gentian,
 Lesser centaury,
 Wild endive,

\[\text{each} \] 2 "

Exhaust by means of boiling water, concentrate the liquors, reduce
to the consistence of an extract; and add, one half-part of crude
quinine, dissolved in three times its weight of lactic acid. Incorporate intimately, thicken with a sufficient quantity of powdered colombo root, and divide the mass into pills of 15 centigra'mmes, (3 grs.)

From one to three pills to be given a-day, and to be continued some days after the cessation of febrile symptoms.

Position of the Foetus in Utero, and the causes of Preternatural Presentations. By Dr. J. Y. Simpson, Edinburgh. (Monthly Journal. Braithwaite's Retros.)—Dr. Simpson endeavors to establish the following propositions relative to the common or natural position of the foetus in utero:

1. The usual position of the foetus, with the head lowest, and presenting over the os uteri, is not assumed till about the sixth month of intra-uterine life, and becomes more frequent and more certain from that time onwards to the full term of utero-gestation.

2. Both the assumption and maintenance of this position, are vital and not physical acts, for they are found to be dependent on the existence and continuance of vitality in the child: concurring with its life, but being lost by its death.

3. In human physiology we do not know or recognize any vital power or action, except muscular action, capable of producing motions calculated to alter or regulate the position, either of the body, or any of its parts; and further, the motory muscular actions of the foetus are not spontaneous or voluntary, but reflex or excito-motory in their nature, causation, and effects.

4. The position of the foetus, with the head placed over the os uteri, is that position in which the physical shape of the normal and fully developed foetus is best adapted to the physical shape of the normal and fully developed cavity of the uterus.

5. This adaptive position of the contained body to the containing cavity is the aggregate result of reflex or excito-motory movements on the part of the foetus, by which it keeps its cutaneous surface withdrawn as far as possible from the causes of irritation that may act upon it as excitants, or that happen to restrain its freedom of position or motion.

Proceeding to speak of preternatural positions and presentations of the foetus, as originating in the derangement of one or other of these normal conditions, Dr. Simpson states them to be referrible to the following causes:

First. Prematurity of the labour; parturition occurring before the natural position of the foetus is established.

Secondly. Death of the child in utero; or in other words, the loss of the adaptive vital reflex actions of the foetus.

Thirdly. Causes altering the normal shape of the foetus or contained body, or causes altering the normal shape of the uterus or containing body, and thus forcing the foetus to assume, in its reflex movements, an unusual position in order to adapt itself to the unusual circumstances in which it happens to be placed.
And, lastly. Preternatural presentations are occasionally the result of causes physically displacing either the whole fcetus or its presenting part, during the latter periods of utero-gestation, or at the commence-
ment of labour.

Prematurity of the labour is a cause of mal-presentation in this re-
stricted sense, that the position of the fcetus with the head lowest, and
presenting over the os uteri, is not generally assumed till the sixth
month; and that from this period such position is taken and kept with
a certainty and frequency which increase in proportion to the dura-
tion of the pregnancy. Thus, Dr. Simpson states, that while the per-
centage of head presentations in children born at the end of the sixth
month is only about 52 in 100, it increases during the seventh month
to 68 in 100, and to 76 in 100 during the eighth and ninth months;
and rises at the full period, as high as 96 or 97 in 100. He says:
It is hence evident that if, from any causes, parturition happens to
come on prematurely, the child is much more liable to present preter-
naturally, than if pregnancy had gone on to the full time; or, in other
words, the prematurity of the labour, is, in this sense, a cause of the
malpresentation of the fcetus.

From an examination of statistics published by various authors, Dr.
Simpson adduces also the following conclusions:
1. That while presentations of the head occur in 96 per-cent. in
common obstetric practice at the full time, the same presentations oc-
cur only in 70 per-cent. among premature labours; 2. that pelvic
presentations are nearly eight times more frequent among prema-
ture labours than among labours at the full time; and, 3. That
transverse presentations are nearly ten times more frequent among
premature labours than among labours at the end of the usual time of
pregnancy.

On the subject of the death of a child, as a cause of abnormal pre-
sentation, Dr. Simpson says:
The child not unfrequently dies in utero, and before labour begins.
In cases in which the death of the fcetus is induced from any cause,
during its intra-uterine life, the child, when labour at last supervenes,
is apt to be found presenting preternaturally. The maintenance as
well as the assumption of the usual position of the fcetus with the head
downwards and over the os uteri, is an excito-motory, and consequent-
ly a vital act; and hence, when the vitality of the fcetus is lost, its
position, as a result of that vitality, is liable to be lost also. In other
words, the death of the child thus becomes a cause of its malpresenta-
tion at the time of birth.

The difference between the liability to cephalic, pelvic, and trans-
verse presentations between children who have died before labour,
and those born alive, may be expressed as follows:—1. Head pre-
sentations are 16 per-cent. less frequent among dead than among living
infants; 2. Pelvic presentations are five times more frequent among
dead than among living children; and 3. Transverse presentations
are four times more frequent among the former than the latter.
Chlorosis in Pregnant Females. (Gazette Médicale.)—At a meeting of the Academy of Medicine of Paris on the 19th of February, M. Cazeaux read an essay, the object of which was to show that the functional derangements so common among pregnant females, such as cephalalgia, vertigo, tinnitus aurium, palpitations, dyspnœa, &c., generally attributed to plethora, are more frequently the results of chloroanemia. In pregnant women sanguine plethora is rare, but serous plethora is quite common. M. Cazeaux founds his opinions upon chemical analysis of the blood, upon the symptoms, and upon the happy effects of the ferruginous preparations: he concludes, from the chemical results, that the principal elements of the blood, during pregnancy, undergo modifications analogous to those of chlorosis. The functional disorders are also similar. Moreover, an animal diet, and the administration of chalybeates, have always been found equally efficacious in the treatment of the functional disorders of pregnancy, as in chlorosis. He now does not resort to bloodletting for the relief of palpitations, and he has never found them to resist the employment of chalybeates when continued for some days.

Medical Miscellany.

Medical Society of the State of Georgia.—An accident which happened to the train on the Macon Rail-road prevented the attendance of our delegates at the late meeting of the State Society. But we have been favored with an account of some of the proceedings of the late meeting, in the following letter from the Recording Secretary, Dr. Nottingham:

Macon, Ga, April 18th, 1850.

Dr. I. P. Garvin, Editor, &c.

Dear Sir,—Pursuant to a resolution adopted at the last annual meeting, the Medical Society of the State of Georgia assembled in Macon, on Wednesday, the 10th inst., and continued in session two days. The meeting, although not a full one, was sufficiently numerous for the transaction of business. Many important subjects connected with the advancement and elevation of the Profession, were deliberated upon in a spirit of harmony, high toned feeling and liberal sentiment, that augurs well for the future usefulness of the Institution.

The officers elected for the present year, were—

Charles West, M. D. of Houston, President;
R. D. Arnold, M. D., of Chatham, 1st Vice-President;
I. E. Dupree, M. D., of Twiggs, 2d Vice-President;
Miscellany.

J. M. Green, M. D., of Bibb, Correspond'g Secretary;
C. B. Nottingham, M. D., of Bibb, Record'ng Secretary;
S. W. Burney, M. D., of Monroe, Treasurer.

The following gentlemen were duly elected Delegates to the next meeting of the "American Medical Association," which will convene in Cincinnati, on the 2d Tuesday in May, viz:

L. D. Ford, M. D., of Richmond;
W. M. Frasier, M. D., of Pulaski;
I. E. Dupree, M. D., of Twiggs;
T. F. Green, M. D., of Baldwin;
Charles Thompson, M. D., of Bibb;
T. L. Rives, M. D., of Troup;
J. N. Simmons, M. D., of Butts;
R. L. Roddy, M. D., of Monroe;
J. H. Oliver, M. D., of Laurens.

A number of committees, composed of much of the medical talent of the State, were appointed to prepare Essays and Reports, upon various subjects pertaining to Medical Science, to be presented at the next annual meeting of the Society—which will be held at Atlanta. Dr. Arnold of Chatham, with Dr. LeConte of Bibb, as his alternate, was selected as Orator for the occasion.

A summary of the Proceedings will be published in pamphlet form at as early a day as practicable.

Very respectfully,

C. B. Nottingham.

New Orleans Medical and Surgical Journal.—We were much gratified a few days since, to receive the March number of our valued New Orleans cotemporary, which has been delayed by the disastrous fire that consumed the office, with all its books, printing material, etc., and reduced to ashes all the profits which had accrued from several years' incessant labors. Whilst we deeply sympathize with our esteemed brother, we can but admire the indomitable spirit which he exhibits. "If we have been unfortunate," he says, "we are not despondent; but gathering additional energy from our recent losses, we shall push forward the work with all that zeal and resolution which can alone guarantee ultimate success in any undertaking." Fortuna opes auferre, non animum, potest.

Extract of a Letter from James H. Oliver, M.D., of Laurens Co., Ga.

I was, on 22d January, 1849, called to see a gentleman whom I found it necessary to cup. His wife, who was some four months ad-
vanced in pregnancy, was sitting near me whilst I was operating upon his temples. Nothing worth noticing transpired at the time of operating or during the latter months of pregnancy. At the expiration of the usual term, she was delivered of a fine, and apparently healthy child. There were found twelve scars in each temple of the child, arranged so uniformly that they resembled the cicatrices made by the action of the scarificator in actual cupping. These cicatrices, as I term them, gradually disappeared as the child advanced in life. The last time that I examined the temporal region they were entirely invisible. How the impressions made upon the mother caused this physical evolution to take place upon the foetus whilst in utero, is wonderfully mysterious. I had always doubted that any such impressions could be made, but I am now constrained to believe it possible.

Percussion. (Gaz. Médicale.)—M. Poirson, Interne at la Salpêtrière, has communicated a new mode of percussion, that consists in striking after the usual manner, without a plessimeter, and with the index or middle finger furnished with a polished thimble, adjusted in such a manner as to confine a certain quantity of air between its upper extremity and the end of the finger. This instrument without altering in anywise the character of the sounds, communicates to them, according to the author, a remarkable clearness and intensity which enables the physician to perform the percussion, and yet to spare the patient almost entirely the suffering occasioned by a shock that is often very painful.

Northern Lancet, and Gazette of Legal Medicine.—A new Medical Journal, under this title, has been received. It is published at Plattsburgh, N. Y., in monthly numbers of 32 pages each, and is edited by Drs. Francis J. D'Avignon and Horace Nelson. A considerable portion of the work will be devoted to Legal Medicine, a subject which has hitherto been too much neglected by the profession. We wish the enterprising editors great success in their honorable undertaking.

A Fœtus discharged by the mouth.—We find in the Gazette Médicale of the 23d February, a very singular case (if true), derived from the Spanish journals. María de la Cruz, aged 18 years, in the second stage of yellow fever, was attacked with vomiting, during which she threw up, with much difficulty, a substance which proved to be a perfectly developed foetus of four months. The female died next day.
On an examination of the body, the uterus was found augmented in volume, and between that organ and the vagina, an abnormal cavity communicating with the intestine by an opening four inches in diameter.

Mortality of Providence, R. I.—We learn from a communication, made by Charles W. Parsons, M. D., to the Boston Medical and Surgical Journal, that the deaths in Providence for the last eight years, among the white population, including the still-born, amounted to 6146, or 1 in 39.42. During the same period, among the black population, which numbers 1476, the deaths were 457, or 1 in 25.89.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>70</td>
<td>29</td>
<td>43-100</td>
<td>82</td>
<td>29</td>
<td>47-100</td>
<td>s. w.</td>
<td>Fair—blow.</td>
</tr>
<tr>
<td>2</td>
<td>53</td>
<td>72</td>
<td>72-100</td>
<td>82</td>
<td>67-100</td>
<td>s.</td>
<td>Cloudy.</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>54-100</td>
<td>58</td>
<td>58-100</td>
<td>58</td>
<td>58-100</td>
<td>w.</td>
<td>Fair afternoon—gale.</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>97-100</td>
<td>68</td>
<td>30</td>
<td>5-100</td>
<td>5-100</td>
<td>s. e.</td>
<td>Fair.</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>30</td>
<td>62</td>
<td>30</td>
<td>5-100</td>
<td>5-100</td>
<td>e.</td>
<td>Cloudy.</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>59</td>
<td>74</td>
<td>29</td>
<td>31-100</td>
<td>31-100</td>
<td>s.</td>
<td>Cloudy—violent storm—rain.</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>41</td>
<td>66</td>
<td>50</td>
<td>100</td>
<td>100</td>
<td>w.</td>
<td>Fair.</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>42</td>
<td>79</td>
<td>91</td>
<td>100</td>
<td>100</td>
<td>w.</td>
<td>Fair.</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>92-100</td>
<td>71</td>
<td>94-100</td>
<td>94-100</td>
<td>w.</td>
<td>Cloudy.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>84-100</td>
<td>72</td>
<td>83-100</td>
<td>83-100</td>
<td>w.</td>
<td>Fair afternoon.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>91-100</td>
<td>46</td>
<td>92-100</td>
<td>92-100</td>
<td>n. e.</td>
<td>Rainy—hail—breeze.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>37</td>
<td>66</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>n. e.</td>
<td>Fair afternoon.</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>94-100</td>
<td>60</td>
<td>84-100</td>
<td>84-100</td>
<td>e.</td>
<td>Rain all night, 1 inch 10-100.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>74-100</td>
<td>83</td>
<td>77-100</td>
<td>77-100</td>
<td>w.</td>
<td>Fair afternoon.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>82-100</td>
<td>66</td>
<td>74-100</td>
<td>74-100</td>
<td>w.</td>
<td>Storm at 2 P.M., 90-100.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>85-100</td>
<td>62</td>
<td>78-100</td>
<td>78-100</td>
<td>w.</td>
<td>Storm all afternoon 1 in. 30-100.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>77-100</td>
<td>66</td>
<td>65-100</td>
<td>65-100</td>
<td>s.</td>
<td>Storm at 4 P.M. 2 nights, 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>59-100</td>
<td>70</td>
<td>62-100</td>
<td>62-100</td>
<td>s. w.</td>
<td>Cloudy.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>85-100</td>
<td>66</td>
<td>90-100</td>
<td>90-100</td>
<td>w.</td>
<td>Fair.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>30-100</td>
<td>53</td>
<td>30</td>
<td>10-100</td>
<td>10-100</td>
<td>e.</td>
<td>Cloudy—rainy.</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>29-35-100</td>
<td>47</td>
<td>29</td>
<td>88-100</td>
<td>88-100</td>
<td>s. e.</td>
<td>Rain, 1 inch 15-100.</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>70-100</td>
<td>57</td>
<td>60</td>
<td>100</td>
<td>100</td>
<td>s. e.</td>
<td>Cloudy—rain, 95-100.</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>41-100</td>
<td>57</td>
<td>59-100</td>
<td>59-100</td>
<td>n. w.</td>
<td>Fair—heavy blow.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>91-100</td>
<td>61</td>
<td>88-100</td>
<td>88-100</td>
<td>n. w.</td>
<td>Fair.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>76-100</td>
<td>63</td>
<td>60</td>
<td>100</td>
<td>100</td>
<td>s.</td>
<td>Cloudy.</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>53-100</td>
<td>71</td>
<td>44</td>
<td>100</td>
<td>100</td>
<td>s.</td>
<td>Somewhat hazy—rain at 8 P.M.</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>32-100</td>
<td>49</td>
<td>31</td>
<td>100</td>
<td>100</td>
<td>n. e.</td>
<td>Rain, 25-100.</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>52-100</td>
<td>53</td>
<td>63</td>
<td>100</td>
<td>100</td>
<td>n.</td>
<td>Fair afternoon—blow.</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>87-100</td>
<td>60</td>
<td>82</td>
<td>100</td>
<td>100</td>
<td>e.</td>
<td>Some clouds.</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>74-100</td>
<td>51</td>
<td>66</td>
<td>100</td>
<td>100</td>
<td>e.</td>
<td>Cloudy—rain at 3 P.M., 55-100.</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>72-100</td>
<td>62</td>
<td>79-100</td>
<td>79-100</td>
<td>n. w.</td>
<td>Fair—breeze.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(•) From E. to N. E.—all around the compass.

8 Fair days. Quantity of Rain 8 inches 35-100. Wind East of N. and S.
11 days. West of do. do. 13 days.

Another most disagreeable month—cold, wet, and tempestuous.