SOUTHERN MEDICAL AND SURGICAL JOURNAL.

EDITED BY

PAUL F. EVE, M. D., and I. P. GARVIN, M. D.

"Je prends le bien où je le trouve."

VOL. I.—1845.—NEW SERIES.

P. C. GUIEU, PUBLISHER.

AUGUSTA, GEO.
PRINTED BY JAMES McCafferty.
1845.
PART I.—ORIGINAL COMMUNICATIONS.

ARTICLE I.

Observations on the Soil, Climate and Diseases of Liberty County, Georgia. By John M. B. Harden, M. D.

Liberty county in Georgia is situated between *31° 38' and 32° north latitude and the 4th and 5th degree of longitude west of the meridian of Washington in the District of Columbia. It extends from the Atlantic ocean on the east, where it takes in the Island of St. Catharines, sixty or seventy miles into the interior, where it is connected with Tattnall county on the west. At this latter point it has a breadth of between thirty and forty miles, but at its eastern extremity it is narrowed to a distance of ten or fifteen miles. It is bounded on the north by the Midway river, and partly by the Canouchie, which touches it on the northwest, and on the south by the south Newport river, and partly by the Alatamaha, and has a superficial area of nearly 1800 square miles.

Soil.—In respect to its soil, Liberty county may be divided into two distinct portions by a line parallel with the sea coast and equi-distant from its eastern and western limits, extending along a ridge of land which is the commencement of what is commonly known as the "Sandhills."

*From two observations made in 1842, by means of two Gnomons of my own construction, I found the latitude of Bulltown swamp, at the southern terminus of the county, to be 31° 38' after making corrections for Sun's semidiameter and horizontal parallax.
The eastern portion is intersected in every direction by many large and dense swamps, which are the tributary branches of the Midway, north Newport and south Newport rivers; taking their rise at the ridge of the Sandhills in what are called "Spring Branches," and continuing down to the head of tide-water ten or twelve miles from the ocean. The surface is very level, with a gradual but imperceptible descent towards the coast. The soil is for the most part composed of sand* and clay in various states of intermixture, in some places the sand, and in others the clay seeming to predominate. In the neighborhood of the swamps the clay is very pure and tenacious, and when mixed with much vegetable matter, it assumes a very dark color and is known as "Blue Clay." This blue clay, with a rich vegetable mould, form our most valuable soils for the culture of Cotton (Gossypium Barbadense) and Corn (Zea maize)—and when combined with Marle, it seems to be inexhaustible.

The western portion at the ridge has a very evident, and in some places, a very abrupt rise of from 10 to 15 feet, and then with a gradual ascent towards the west, it assumes the same level aspect with the eastern portion, until it reaches the limits of the county. The soil here is mostly sandy and barren, except in the immediate vicinity of the branches which are given off by the Alatamaha on the south, and the Canouchie on the north. The sand varies in depth from 4 to 8 feet, and probably even more in some places; and in reflecting upon the appearance presented, we can hardly resist the impression that this ridge was at one time the limit of this part of our continent, and that these sands were the downs cast up by the waves of the ocean. In the midst of this sandy waste are found two or three ponds or lakes, which are worthy of notice. They are nearly circular, having a circumference of about four miles, and discharge themselves by small outlets into the Alatamaha and Canouchie—they are surrounded by a thick growth of dwarf-bays† and andromeda.‡ In approaching them, you come, as it were, to a large clearing, and upon entering, you find nothing in the form of trees, except dwarf or stunted pines. The surface is covered over with sphagnum and ferns, and here and there clumps of the andromeda and the bay, intertwined with the vines of the smilax.|| The soil on the top is nothing but a complete mat of fern roots, covered with the sphagnum, upon penetrating which, you may sink a rod to

* See Appendix, Note A.
† Laurus Carolinianus. ‡ Andromeda racemosa. || Smilax laurifolia.
any depth, apparently, without finding bottom. The subsoil is dark, but when dry has the appearance of snuff, and (as I am informed by an intelligent gentleman,) will burn readily; indeed these ponds have all the features that characterize the peat-bogs of Ireland, the moors of Scotland, and the turf-bogs of the north of Europe.

In both portions of the county the surface is covered over in many places with a very coarse white sand and gravel: this is particularly the case at "Gravel Hill."

In several places there are to be found lower and level tracts, of considerable extent, destitute of shrubbery and covered over by herbaceous plants, interspersed with tall pines. These tracts are known among us as savannas. In the adjoining county of McIntosh they are very conspicuous, and running nearly east and west, present very much the appearance of water courses that have been gradually filled up by alluvial deposits from the higher grounds. These savannas are capable, I believe, of great improvement by culture, but they are kept in this waste and barren condition by the custom of allowing fires to sweep over them at least once a year, in order to afford pasturage for cattle. In the summer and autumn they are covered with the most beautiful flowers, &c., and present a fine field for botanical researches.

Although not immediately connected with our subject, I cannot omit to mention the existence in many places of Indian mounds, or tumuli, which were probably used by the Aborigines as places of interment, and in and around them are found various instruments for domestic or warlike purposes—such as, arrows and spear-heads, hatchets, and mills for pounding grain, made of hard stone or flint, and pieces of pottery, made of clay, on which at times various images were curiously wrought.

After penetrating the superficial soil, which, as we have seen, varies greatly in depth at different places, we come down to a bed or sub-stratum of red clay, which is generally from 8 to 10 feet thick; after passing this, we next come to a bed of sand, usually white, and containing gravel or pebbles, either angular or rounded, by attrition. This is the depth to which we have to penetrate in digging our wells, the deepest of which are from 10 to 20 feet. In some places, we come to a kind of sand-stone, of a very dark color, and very hard, when in situ, but upon exposure to the air, it assumes a ferruginous tint and crumbles readily beneath the pressure of the fingers. In some places an ore is found which is very rich in iron.
No fossil bones have, to my knowledge, been discovered within the limits of the county. I have, however, in my possession, portions of a coprotite, that was found at the bottom of a well 17 or 18 feet below the surface. It is composed of silicious sand, loosely held together by a small portion of alumine and phos. lime. The proportion of the latter ingredient is so small that I am disposed to regard it as the coprotite of a graminivorous animal.

A few feet below the surface, oyster shells of the neighboring rivers may be found in various localities, particularly in the eastern part of the county, from 20 to 40 miles from the ocean. Marle beds also occur in many places, which I have no doubt are the product of the decomposition of the shells of the oyster, (ostrea edulis) although I have never been able to identify the shell. The marle is sometimes very rich in carb. of lime, and might be made available as an excellent manure—I have also some beautiful crystals of the sulphate of lime, found in Bulltown swamp.

Petrified wood is dug up at various depths below the surface; and on the north Newport and Midway rivers, the stumps and trunks of Cypress trees and arrow-heads are found at the depth of 4 feet or more—a fact which was noticed by Bartram, in his travels through this State and Florida, nearly seventy years ago—and in some places I am informed, a black, soft mud, has been found, having all the smell of "Marsh Mud."

These various facts seem to me to shew conclusively that the soil of this county, and more particularly the eastern portion, is entirely alluvial, and, like that between the Alatamaha and Turtle rivers, described by Mr. J. H. Couper in a paper read before the Geological Society of England, belongs to the post-pleocene epoch.

The Sylva and Flora of this county is unsurpassed* by those of any other district of equal extent in the world. Our swamps abound with the tallest and most magnificent trees of various kinds, and the open woodland is covered over at certain seasons with the richest and most beautiful plants and shrubs—

"Arboribus varia est natura creandis
Namque aliae, nullis hominum cogentibus, ipsæ
Sponte sua veniant componsque et illumina late
Curva tenet."
—Virgil. Georgics lib. 2.

It is true, that some of our most luxuriant forests have fallen under the ruthless attacks of man for agricultural purposes, and from a mis-

* See Appendix, note B.
taken system of culture, much of our virgin soil has been worn out and left in the garb of widowhood; but it is to be hoped that greater improvement in agricultural science will cause the most of it to be reclaimed, and although disrobed of its natural beauty, that it may yet put on the mantle of art and civilization.

CLIMATE.—In determining the temperature of our climate, five observations of the thermometer have been taken every day for a period of one year, commencing in August, 1838, and ending in August, 1839. The hours chosen for these observations were as follows: 7 o'clock, A. M., and 1, 3, 7 and 11 o'clock, P. M. From these observations, it appears that the mean annual temperature is $6^\circ\ 41'$. The year 1839, a part of which is included in these observations, was unusually hot and dry, the thermometer rising in the month of June to upwards of 100°. This may tend to raise the mean of this year, but it is probable that the above is not far from the mean of any given series of years.

Although my observations with the thermometer have not been sufficiently long continued to warrant it, yet I have no doubt that there is a small oscillation in the mean temperature of our climate during a certain period of time. This seems evident from the effects of the climate upon some of our tropical and even indigenous plants. Thus there are seasons with us in which the cotton plant is scarcely killed, and assumes nearly the character of a perennial, and again it is so injured by the cold that hardly a single root will sprout up in the ensuing spring. The orange tree (Citrus Aurantium) will for many years do well amongst us, particularly along the sea-coast, when a winter or number of winters will succeed, in which they are nearly destroyed. In the winter of 1834-'35, which was the coldest winter recollected by the "oldest inhabitant," they were killed even in Florida, to the great pecuniary damage of the citizens of that State. Indeed so intense was the cold, that the hedges made of the Cherokee rose (Rosa leavigata,) one of our most hardy perennials were very seriously injured.

The annual range of the thermometer during this year was 83°—the minimum on the 24th December, 1838, being 15°—the maximum in June, 1839, being 101°—I am disposed to believe that this is not far from the mean annual range, although we are subject to the extremes of Zero during the winter, as was the case in January, 1835, and 100° in the summer, as happened in 1839. The greatest range observed in any one month took place in March, 1839, when the ther-
mometer on the 5th was at 22°, and rose on the 28th to 82°; and in December, 1838, when the minimum was 18° and maximum 78°. The least monthly variation was 22° in August, 1838, and 23° in July, 1839.

The mean diurnal variation for the whole year was 17° 16′—the greatest variation taking place in the winter and the least in the summer months—the greatest mean diurnal variation took place in the month of March, 1839, and was 22° 19′—the least in the month of September, 1838, and was 9°. The greatest variation between the maximum and minimum for any one day, was 43° in March, 1839—the least in June and July, when it was only 14°. In the months of June, July, August and September, the greatest diurnal range was not more than 16°—proving conclusively what has been stated above, that the temperature is far more agreeable during the summer than at any other season of the year.

The months, whose mean temperature corresponds most nearly with the mean temperature of the year, are April, the mean temperature of which is 68°—and October, whose mean temperature is 65°. These are decidedly the most pleasant and agreeable months in the year.

The coldest month observed was January, the mean temperature of which was 51°. There can be no doubt that the coldest weather we experience takes place after, rather than before, the winter solstice, and I believe January is usually our coldest month. So, too, our warmest weather is for the most part after the summer solstice. In 1839, the mean temperature of August was 83°, which was also the mean for the month of June. This last month, however, was unusually hot. The mean for July was 80°.

The temperature of our well's I have found to be in the summer 74°—which is 8° above the annual mean. I have no doubt that they are measurably affected by the temperature of the air, on account of their being at so little depth below the surface.

The hottest part of the day is after the sun passes the meridian, and generally, unless interrupted by clouds or rain, there is a gradual rise of the thermometer from the rising of the sun until 3 o'clock, P. M., when it attains its maximum. After this, there is a gradual fall, until 11, P. M., when it is nearly as low as at any other part of the day. I find the mean difference between the temperature at 3 o'clock, above that at one o'clock, to be about .65 of a degree for the whole year—so that the hour of 3, P. M., may be considered the warmest part of the twenty-four hours.
I have made no observations upon the barometric state of the air, nor have I measured the annual amount of water that falls, my observations having been confined exclusively to the general conditions of the weather, in respect to clouds, wind and rain. By consulting, however, the meteorological tables kept in Savannah by Mr. Oemler and Dr. Posey, I find that the mean quantity of water that fell at that place during six years ending in 1842, was 41.52 inches. It is probable that this is not far from the quantity that falls annually in this county.

Many of our heaviest rains seem to be irregular, but I am inclined to believe that long continued pluviometric observations will serve to show that we are situated in that zone which has been happily termed sub-tropical by M. de Buch—where the climate, in respect to seasons of rain, partakes of the nature of that within the Tropics—but the semestrial period of rain within the Tropics, instead of passing into one trimestrial period, which is estival in our hemisphere, as stated by M. Fournet,* seems to me to be divided into two trimestrial periods—one of which is estival and the other hyemal—the latter taking place in the months of January, February and March, and the former in the months of July, August and September, or probably more correctly the first from the winter solstice to the vernal equinox, the latter from the summer solstice to the autumnal equinox.

By consulting the Savannah tables above referred to, it appears that the mean quantity of rain in inches that fell during the first trimestrial period for six years, was 8.04—for the second during the same time, 17.72—whereas the quantity for the intermediate periods from April to July, and from October to January, was for the first 10.50 inches, and for the second 5.26 inches. The apparent contradiction to the law assumed above in the mean quantity for the period between April to July, is explained by the fact, that an annual quantity of water fell during the month of June, 1838, amounting to 10.03 inches, and again in May, 1840, when it amounted to 10.08. Omitting these, the quantity would be probably more near to the mean average for that period.

There can be no doubt that our irregular rains are sometimes our heaviest—so that if we are guided alone by the absolute quantity of water fallen, we might be led to doubt the correctness of the law; whereas we may have rainy seasons when very little water actually

falls. By referring to the same tables, I find that taking the number of rainy days we have for the first trimestrial period, an average of 19.25—for the second 14.25—whereas for the other periods, we have for the first 11, and for the second 13.75. From our own observations, I find that of 90 rainy days, 18 occurred during the first, and 43 during the second trimestrial period, and for the two others, 17 for the first and 16 for the latter. Of 119 clear days, 37 occurred during the period from January to April, 11 from July to October, 31 from April to July, and 40 from October to January. From general observations of the weather for some years past, I am decidedly of opinion that our dryest months are April and October, and our wettest the months of February and August. The dew-point always appears to me to be highest in the latter month. There is then more of sensible perspiration from the skin, and leather, wood and clothes, are more liable to mildew and mould, and iron to rust.

As we are subject to great extremes of temperature, so we are also liable to great extremes in regard to the quantity of water that falls at different seasons. Sometimes we have seasons of great rain, and sometimes seasons of great drought. We are subject, at times to great inundations from excessive rains:

Sæpe etiam immensum célo venit agmen aquarum,
Et tardam glomerant tempestatem imbris atri,

The quantity of water that falls in a short time is almost incredible. These rains are for the most part irregular, but they more commonly occur during one of the above named trimestrial rainy periods. The greatest freshets within my recollection occurred in March, 1831, and March and September, 1841. At these times, the swamps and rivers overflowed their banks and produced great injury to flocks and growing crops, as well as to the roads and bridges. In 1841 we were two weeks without a mail from Savannah, although running previously three times a week. The rise of water in our swamps is fully six to eight feet. The year 1839, and the present year up to this time, have been attended with the greatest drought that I remember to have observed.

Thunder storms are very common in our climate, and are at times very disastrous in their effects. It is a curious fact in regard to them, that they always have a tendency to the sea-coast. As soon as they are formed they move onwards in this direction, and, unless interrupted by winds, I think I have observed a marked disposition to
follow water courses. During the falling of the rain from a thunder cloud, I have often noticed that there is a strong current of air setting in every direction from the cloud, so that a vane on this account always points towards the cloud when near enough to be influenced by it, both when coming up and after it has passed, provided the rain is still falling.

Our winds are, for the most part, very variable—if we divide them into easterly and westerly, by a line passing from north to south, I find that for the period of my observations, the wind was easterly 124 days, and westerly 138 days. Upon looking at the prevailing winds for each month, I find that they are more prevalent from the west, during the winter, and more from the east, during the summer months. During the warmest days of spring and summer, we enjoy the delightful sea-breezes that comes up about 10 or 11 o'clock in the morning, and prevail until 3 or 4 in the afternoon, when they die away and give place to the land-breeze, which sets in an opposite direction during the night. Very near the sea-shore, these sea-breezes continue much longer, and may even blow during the early part of the night. At a distance of forty or fifty miles from the coast I believe they are rarely if ever felt.

During our estival rainy season, we are subject to what is commonly known among us as “north-east weather,” when the wind prevails from that direction, sometimes without, but most commonly with, clouds and rain. I am inclined to believe that these winds are really the trade winds of the tropic, carried beyond their northern limits probably by the influence of the sun. However this may be, it is a remarkable fact, that these winds affect a certain periodicity, and are apt to recur at weekly or semi-monthly periods. It is at these periods that we are liable to have the most dreadful hurricanes or typhoons. The most memorable of these, of which I have any account, occurred on the 15th August, 1752, “which was in Carolina, the most violent that was ever known since the settlement of the English there, and which, in many places, left not one tree in twenty standing.”—[See an account of the Congregational Church at Midway, by John B. Mallard, A. M.] Another occurred on the 8th day of September, 1804, which, from all that I can learn, must have been equally violent. I was myself a witness of the last great hurricane, that took place on Wednesday night, the 14th September, 1844—It commenced to blow from N. E. about 3 o'clock in the afternoon, and gradually increased until probably 1 o'clock at night, when its vio-
lence was greatest—the wind then suddenly shifted S. E., and soon began to moderate. The night was very light, although I do not remember the state of the moon. The rain, or rather mist, that fell, had a saltish taste for miles in the interior, evidently being mixed with spray from the sea-water. The appearance of desolation that was presented to the eye on the next morning, was awful in the extreme. There is a disposition to these storms to a greater or less extent every year, and we frequently experience slight ones: indeed we always have some indications of all the hurricanes that take place in the West India Islands.

Tornadoes are by no means frequent, but we sometimes have them. Besides one or two of which some traditionary account still lingers with us, as having passed through the county many years ago—I remember one that took place in March, 1836—I have myself observed the track; traces of which are probably still visible—Its course was from S. W. to N. E.; almost every tree of any size was prostrated by it, in its path, and the most of them turned in towards the axis of the storm. Its track was probably fifty yards in width, and passed through the north-western part of the county.

Although not confined to our county, I desire to record here the following remarkable meteorological phenomena:—One week after the great hurricane of 1804, on the night of the 15th of September, there was an appearance of a very large and splendid meteor, which caused great consternation. The moon was shining brightly at the time, when suddenly there was heard a rumbling noise like distant thunder, which gradually increased until it was sufficient to awake the sleeping, and at the same time a bright light was seen, superior much to the light of the moon. This noise was continued for a few moments, and subsided as it had commenced. The direction is supposed to have been from west to east. There can be no doubt that this was an aerolite, but whether it fell to the earth or not, I am unable to say. Another meteor of a similar kind, although not as large, passed over the county on the night of the 10th day of July, 1826, at about 11 o'clock.

All of us remember the very remarkable meteoric shower that took place on the night of the 12th November, in the year 1833—I was called up about a half hour before day-light, and watched them until they were very faintly visible—The meteors fell in almost uninterrupted succession, in a direction apparently very little inclined to our horizon—Many of them were larger and brighter, and left lumin-
ous trains that were visible for some seconds. The scene was far more magnificent than any I had ever witnessed, and to describe it accurately defies all power of language—it was such a scene as makes the beholder gaze in mute astonishment, and the moral impression of which can only be conveyed to others by expressive silence.

Diseases.—Liberty County has shared the fate of most newly settled districts where there are rich lands, and for many years after its first settlement was very sickly;* but for ten or fifteen years past, according to the testimony of all, it has proved to be as healthy as any other county with the same population in our State. I am sorry that no public records are now kept, by which I might ascertain with certainty, the proportion of deaths to the number of inhabitants; but from my observations, I am sure that for ten years past, the proportion has not exceeded two per cent. per annum.

Many cases have contributed to bring about this state of things. For many years after its first settlement the culture of rice was the chief business of the inhabitants. At present the dry culture system is everywhere adopted, and nothing but cotton and corn is raised as articles of export. Some of the people early introduced the custom of removing from their plantations during the summer and fall seasons, but it was not generally adopted until of late. It is now very rare for any family to reside on their plantations during the sickly seasons, and indeed many have entirely abandoned them for healthier locations in the pine lands of this or the adjoining county of McIntosh. But probably a more important cause may be found in the change of habits of the people. The black population is better fed and clothed now than formerly, and the habitations of both white and black are greatly improved. The use of intoxicating drinks has been almost entirely given up—and I cannot but add, that the system of practice, both domestic and professional, has been greatly altered for the better. Less drastic and poisonous medicines are now employed, and indeed the heroic treatment of the early schools of medicine once followed in this country has been exchanged for the milder and more rational method of assisting Nature and guarding against the "nimia diligentia Medici."

Epidemics may be said to be entirely unknown among us, if we except the Influenza, which in its progress through other parts of the

* See Appendix, note C.
country sometimes makes its appearance here. The Asiatic Cholera in 1832 prevailed to some extent on the Ogechee river, in Bryan county, within a few miles of Liberty, but not a case occurred within the limits of our county. There are seasons, however, in which our common endemic diseases are far more prevalent and fatal than at other times, although I have not been able satisfactorily to refer this partially epidemic character to any particular constitution or condition of the atmosphere. I am disposed, however, to believe that dry seasons are more healthy than those which are attended with excessive rains or dampness of the air.*

Sickly seasons have appeared to me to observe a certain periodicity, or to prevail once during a cycle of years. This cycle, so far as I can determine from a very general and brief experience, seems to be a period of about ten years, and may correspond with the cycle through which passes the small oscillation in the mean temperature of our climate. Thus I am informed that the years 1817 and 1820 were unusually sickly—so also was the year 1830. The last sickly year that we have had was 1840.

In regard to the relative salubrity of the separate seasons of the year, I would give it as my opinion, that there is more sickness during the autumn and winter, and less during the spring and summer. Winter diseases are far more fatal than summer diseases. The healthiest month in the year is probably May.

The only contagious diseases to which we are subject are, Pertussis or Whooping cough, Rubeola or Measles and Syphilis—Varicella or Chicken pox sometimes prevail, Variola never—Scarlatina has sometimes shown itself in a sporadic form, but has never extended far within my observation—Whooping cough and Measles are common, and I have known them to exist together on the same place, and, if I mistake not, in the same person: which has led me to suspect that the two diseases are isopathic, or in other words, that whooping cough arises from measles in the lining membrane of the air passages. The venereal disease is probably more common than my observations would lead me to believe; but being a disease that seeks concealment, it is often cured in its simpler forms by the aid of empiricism, without the advice of the physician. It is confined almost exclusively to the black population. Gonorrhoea is universally known among them as "running reins," and is attributed in every instance to

* See Appendix, Note D.
blows on the back or perineum, or some violent strain. The history of a very curious case has come to my knowledge—in which a man with gonorrhcea communicated it to his wife during pregnancy. The child, after birth, was affected with a disease which was supposed (by a physician, I think,) to be syphilitic, and died. I am sorry that it did not come under my own observation; but still it tends to confirm a suspicion long entertained, and upon which the medical world is yet divided, that gonorrhcea and syphilis are *isopathic* affections.

But by far the most common diseases of our climate are the *febrile* and *inflammatory*. During the course of my experience, I have met with only two species of *essential fever*—one, and by far the most common, is our "Marsh-miasmatic fever," an account of which, together with its various modifications, I have given in the October number of the American Journal of the Medical Sciences for the year 1844. The other has been described in the August number of the same Journal for the year 1840.

The form in which the "*marsh fever*" usually makes its appearance is the double tertian, with one severer and one milder paroxysm. The first paroxysm, or the more severe, is marked by a more decided chill or cold fit, and by a more complete apyrexia, usually beginning in the morning and leaving in the afternoon, so that the patient will spend a comfortable night, and the next morning feels better; but sometime after midday another paroxysm comes on in a more disguised or insidious manner, which continues all night and runs into the paroxysm of the next morning, without any perceptible remission, except in the *heat of the skin*. The crisis or acme of the fever is usually at the third or fifth tertian paroxysm, or on the fifth or seventh day.

The other species of fever I have supposed might be the Dothinen-terite of the French. If it is not, it is, so far as my reading has gone, an undescribed form. I have called it the *Sandhills Fever*, from the fact that I have met with most cases of it in that part of the county. Its progress is slow, and its duration from twenty to thirty days. It most commonly affects the young—all the cases I have seen have been of persons under twenty years of age.

True Typhus, the typhus gravior of authors, which I take to be the same as the so-called camp, jail and hospital fever, I have never seen, nor do I know any physician here who has seen it. Being the product of crowded and ill-ventilated places, it is not to be supposed
that it would be apt to appear in the country. One case of true Yellow fever, attended with "black vomit," brought from Augusta, Geo., during the prevalence of the epidemic there, I attended in this county, in the fall of 1839. This case, in my opinion, differed in no essential particular, from the case of a foreigner who was attacked with our common Remittent, in October, 1842, which afterwards assumed the congestive form and terminated with black vomit.

Puerperal fever occasionally occurs. This fever, I believe, is entirely isopathic with erysipelas—or in other words, nothing more than erysipelas of the womb and its investing membranes. This was the opinion of the Father of Medicine, as appears from the following remark in his aphorisms: "If a pregnant woman be afflicted with Erysipelas of the womb, it will prove fatal to her."—[Hippocrates: Aphorisms, sectio 5th—43. My reasons for this opinion I hope to give at some other time. Milk fever is common after acouchement, but rarely attended with serious consequences. It is sometimes followed by collections of matter of a milky purulent character in the mammae, and sometimes by phlegmasia dolens. The best prophylactic against both results is the early application of the child to the breast.

*Inflammatory affections prevail mostly during the winter months. Those of the head are extremely rare. I have only met with one case of acute inflammation of the brain or its investing membranes, and this occurred in a child about three months old. It terminated in effusion of water within the cranium.

Inflammations of the respiratory organs are most common. Croup in its inflammatory form is rare. Laryngismus stridulus is the affection mostly known among us as croup. Pneumonia, bronchitis and pleurisy are here, as almost everywhere, of frequent occurrence in relation to other diseases. Gangrene of the lungs sometimes occurs.

Acute inflammation of the abdominal organs is not very common. Acute hepatitis is, in my opinion, far less common than it is generally supposed to be. Functional disorder is frequent, but I have rarely met with any violent acute form of disease that could be referred with certainty to the liver as its primary source. It seems to be an universally entertained opinion, that in hot climates the liver must be often diseased; but according to my observation, that organ is

*I use this term as commonly understood, without pretending to endorse the correctness of its application to the many different diseases included under it.
often blamed for disorders of which it is entirely guiltless. Dr. John-
son's works on Tropical Climates and Diseases of the Liver, are, I
fear, somewhat of a libel upon both topics of his very fertile and
ingenious pen. Were intoxicating drinks, the use of opium and
tobacco,* the immoderate eating of animal and vegetable food, and
more particularly the former, entirely abandoned, and people to live
with a strict regard to temperance in all things, the liver would no
doubt perform its functions with as much regularity and certainty as
any other organ in the body—and the equable and balmy air of the
tropics would be redolent of health. For my own part, I cannot see
why the liver has been so much singled out by authors as the strong
hold of disease, as it were, and so many articles of the Materia Medica
collected together under the name of Cholagogues for its especial
benefit. Every young practitioner is for the most part directed to
look to it in almost every case, and he begins his career with the
"Sampson" of the Materia Medica as the ground of all his hopes,
and whenever put to it to tell, in obstinate cases, what is the matter
with his patient, clothes all his misgivings in the sapient reply, that
it is Chronic Hepatitis.

A paralytic state of the liver and spleen very frequently arises
as sequelae of intermittents when long continued, and should no doubt
be treated in a similar manner. They are of far less common occur-
rence now than formerly, which is to be ascribed, I think, mainly to
the fact that blood-letting is not pushed to so great an extent, and
quinine earlier resorted to, in the treatment of this fever now, than
it was even a few years ago. It is but just to remark here, that the
"observations" of Dr. Wm. C. Daniell "on the Autumnal Fevers of
Savannah," published nearly twenty years ago, contain the first
efforts that have been made to introduce a practice in our autumnal

*Excess in eating and drinking is injurious to health in three different ways.
It immoderately strains and thereby weakens the digestive organs; it prevents
digestion, since it is impossible that in so large a quantity every particle should
be digested properly, and it produces crudities in the colon and morbid hu-
mours. Finally, spirituous liquors, of whatever name they may be,
must, by all means, be considered as substances that shorten human life.
They are a liquid fire, accelerate the consumption of the powers of life in a
fearful manner, and in fact transform life itself into a process of combustion.
Moreover, they create cutaneous diseases, aridity and torpor of the fibres,
pre-
mature old age, cough, asthma, pulmonary complaints, and—what is worst of
all—an awful dullness and insensitivity, not only with regard to physical, but
also with regard to moral impressions.—Hufeland Makrohistik, 21; 39, 44.
Observations on the Soil, Climate and Diseases [October,

fevers, which in a modified form is beginning to be universally adopted.

Bowel affections are among our most ordinary diseases, but in most cases may be traced, I think, to errors or irregularities in diet, indigestion and dyspepsia, and rarely call for medical aid; but I think the former is common, while the latter is rare. Cholera morbus, diarrhea and dysentery, most commonly arise from acidic or unwholesome food or drink. The latter prevailed to some extent in 1827, in the form of a local epidemic, and was very fatal. This was, however, before my admission to the practice of medicine, and I know very little about it. Cholera infantum sometimes, although rarely, occurs and generally terminates in marasmus.

Inflammatory rheumatism is not frequent, but the neuralgic form, or what is known as chronic rheumatism, is more common. Gout is rarely met with, and probably will be unknown to the coming generation. Calculous affections are extremely rare—I have never met with a case; and I have never heard of a case of stone in the bladder within the limits of our county. Phthisis pulmonalis or consumption, is also very uncommon among our native population—I have only seen three cases among the whites, and about the same number among the blacks, during the course of fifteen years. Scrofulous enlargement of the lymphatic glands, however, is frequently seen among the latter. This seems to indicate that our climate is not favorable to the development of scrofula in the internal, but rather in the external organs, for I hold scrofula and tubercular consumption to be truly isopathic affections.

Two or three cases of Goitre have come to my knowledge; but surely the remark of Juvenal, in reference to the Alps, has no application here—

"Quis gutur tumidum miratur in Alpibus."

Of the cachexies, however, among the most familiar to us may be enumerated cachexia africana or dirt-eating, and dropsy. My reading and observations in regard to the former disease have led me to the following conclusions:—The eating of earthy substances has at all times prevailed to a greater or less extent among certain classes of men. Celsus distinctly alludes to it as a cause of disease in his day—"Quum diu color sine morbo regio malus est, hi vel capitis doloribus conflictantur vel terram edunt."—[Medicina, lib. 2.]—and Baron Humboldt mentions it as being common among certain tribes of American Indians, as well as other people in various parts of the
world.—[Personal Narrative passim.] Among the negroes here, I believe it to be a very common habit, and one that is taught them from childhood. I remember to have eaten clay myself when a child from the example which was set me by negro children.

It does not appear that the habit is necessarily productive of ill consequences. This was the observation of Humboldt in regard to the Otomaes and others. Among us, I know that it does not in most cases bring on disease. It is, in my opinion, almost universal among negro women who are in a state of pregnancy. I have seen places in the fields where the clay has been recently dug at by their fingers for the purpose of being eaten. I have also known a pregnant female to eat chalk in large quantities, and declare it to be a most delicious morsel. In such cases, the desire no doubt arises from demand on the part of the system for inorganic elements, and more particularly lime, and should be gratified in a proper way. If birds are entirely deprived of all substances which contain lime, their eggs will be soft, as I have observed to be the case with fowls that have been long kept in a coop, and I have seen them, under such circumstances, eat pieces of mortar thrown into them with the greatest avidity.

The disease connected with dirt-eating is evidently chlorosis. It is for the most part confined to females, and appears to arise from mal-assimilation and defective hæmatosis, whereby the blood is nearly deprived of its coloring matter, although the relative proportion of albumen and fibrine is in a great degree preserved. That this disease may be brought on by eating clay, when indulged in to too great an extent, I will not deny; but it is certain that I have seen it when the fact of eating it could not be proved, and indeed where the probabilities were strongly against the suspicion. It is certain, however, that the disease, when it occurs, is always aggravated by it, and that it should be prevented if possible.

I believe the disease to be curable—and I will here depart a little from my plan, and give the treatment, which I believe to be best adapted to its cure. In all cases, if the patient is young, and the pulse and state of the system will allow it, I begin the cure by blood-letting. In two cases I bled the patients from six to eight times in the course of two or three months, taking away from half to one pound at a time, and when I commenced, the blood would hardly have reddened a white handkerchief. My object in doing this is not to subdue inflammation, but to remove from the vessels an impure fluid.
which is not blood, so that the system may have a better opportunity of making good blood. The blood-letting is intended to act the part of a vascular cathartic. My next object is to stimulate the digestive organs to the proper performance of their functions, and this I believe to be best accomplished by occasional mercurial cathartics, and the continued use of the sesquichloride of iron—a preparation which is not found in the shops, but which can be very easily made. The diet should be generous, and consist of such articles as they fancy most.

Dropsy, as stated above, is very common, and appears in the forms of hydrothorax, ascites and anasarca. A great proportion of the older negroes die of this disease. In the young it sometimes occurs, but in them it is almost always curable. From the result of one case recently under my care, I beg leave here to suggest an early resort to paracentesis in cases of ascites in young persons.

Passing over some other affections, which are either common everywhere, or too rare to be regarded as peculiar anywhere, I would conclude this brief sketch by a few observations in regard to the Surgical, and Obstetrical practice of the county.

Surgical cases are of extremely rare occurrence—I know not whether this is to be attributed to the want of subjects, or to the want of confidence in the art itself, arising from the small number of striking cures that have been performed among us by its aid. Some few cases of dislocations or fractures, call for surgical interference, and occasionally a small encysted or sarcomatous tumor has to be removed, or a limb to be amputated—omitting these and such-like, I beg leave to record the following cases, which have occurred in my practice:

The first was an operation on both eyes, for cataract, by depression or couching, in the case of a negro man about 80 years of age. The instrument used was a No. 6 or 7 sewing needle, which I ground to suit myself, and then fixed into a handle. The case terminated favorably. The second was a case in which I extirpated the right mamma for a carcinomatous affection. The wound healed readily, and the patient appeared to be well for one year, when the disease returned, and although removed a second time, the woman died in six months after. On the 2nd March, 1843, I divided the tendo achillis for talepis equinus, and applied an apparatus of my own construction upon the principle of Stromeyer's. The operation has been as successful as could have been expected. The last two cases were both hydarthrosis of the knee joint; in the first of which I operated
by the introduction of a seton, a practice which I had never heard of before. In this case the fluid was so much like blood that I thought I had punctured an aneurismal tumour.* In the second case, I simply opened the sac, and introduced tents and injections of salt and water. Both cases have terminated favorably.

Obstetrical cases, requiring either instrumental or manual assistance, are equally rare—of the former, I have only met with one, and that was a case of locked head, in which the child was dead, and the woman so much exhausted that I thought it absolutely necessary to perform embryotomy. The woman, however, was too far gone to recover. Besides this, the only cases that have come under my care requiring manual assistance, are the following:—One case of footling, in which the long diameter of the head was engaged in the short diameter of the superior strait; one case of face presentation, in which I rectified the position of the head, without turning; and three cases of shoulder and arm presentations. The first of these has been reported in the August No. of the American Journal for 1833. In the last two, the delivery was effected by turning: one terminated favorably—the other died of puerperal fever. I have also seen one case of severe hæmorrhage during labor, in which turning was necessary in order to expedite delivery. Cases of retention of the placenta are common. I have met with one case of miscarriage, in which it was adherent, attended with most profuse hæmorrhage.

In closing these observations on the Soil, Climate and Diseases of Liberty County, I am tempted to use the language of Pliny, in praise of his beloved Italia—of the justness of its application to this county, let others judge. "Nec ignoro ingrati ac segnis animi existimari posse merito, si breviter atque in transcurser ad hunc modum dicatur terra nomine Deùm electa quæ calum ipsum claritus faceret et colloquia humanitatemque homini daret. Sed quid agam? tanta nobilitas omnium locorum, tant a rerum singularum populumque claritas tenet—Jam vero tota ea vitalis ac perennis salubritatis coeli temperies, tam fertiles campi, tam aprici colles, tam innovii saltus, tam opaca nemora, tam munifica silvarum genera tot annium fortiumque ubertas."—(Natural History, lib 3, 6.)

* This case, I believe, has been reported in the New-York Journal of Medicine, but I have not seen the number.
APPENDIX.

Note A. I have made no analysis of the soil of the county, but I subjoin here analyses of two specimens, from different parts of the county, by Mr. Cotting, formerly State Geologist, which will give some idea of its constituents.—(Vide his Essay on the Soils of Georgia, p. 111.)

<table>
<thead>
<tr>
<th>1ST ANALYSIS</th>
<th>2ND ANALYSIS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water of absorption</td>
<td>10.00</td>
</tr>
<tr>
<td>Organic matter</td>
<td>8.00</td>
</tr>
<tr>
<td>Sulphur</td>
<td>1.40</td>
</tr>
<tr>
<td>Silica</td>
<td>54.00</td>
</tr>
<tr>
<td>Alumina</td>
<td>18.00</td>
</tr>
<tr>
<td>Humin</td>
<td>2.00</td>
</tr>
<tr>
<td>Apocrene of Iron</td>
<td>1.00</td>
</tr>
<tr>
<td>Sulphuric Acid</td>
<td>2.04</td>
</tr>
<tr>
<td>Protoxide of Iron</td>
<td>.50</td>
</tr>
<tr>
<td>Magnesia</td>
<td>.96</td>
</tr>
<tr>
<td>Phosphate of Iron</td>
<td>2.10</td>
</tr>
<tr>
<td></td>
<td>100.00</td>
</tr>
</tbody>
</table>

Note B. The following catalogue of the phenogamous plants found within or near the limits of Liberty County, will exhibit the natural growth of its soil. I am aware that it is very incomplete, and in some cases even inaccurate, but it is sufficiently full and correct for our present purpose. Many plants among us have, no doubt, escaped my notice, and there are some which have been omitted merely because I have not been able satisfactorily to distinguish them. This is particularly the case with species belonging to the natural order of the Gramineae and the families of the Leguminosa and Composita, and it is possible, that of those enumerated, there are many to which I have affixed a wrong specific name. In all cases of doubt, however, I have added a note of interrogation. The most of these plants have been seen and determined by myself—a few have been given from the statements of others upon which I thought I might rely: these are distinguished by an asterisk. The list is in alphabetical order.

Acalypha virginica
Acer rubrum
Acerastes longifolia
Achyranthes repens
Acorus calamus
Aesculus pavia
Agave virginica
Ageronia eupatoria
Agrostis alba
" indica
" sericea, &c.
Aira obtusata
Aletris aurea
" farinosa
Alopecurus geniculatus
Allium inodorum
Amaranthus lividus
" spinosus
Amaryllis atamasco
Ambrosia paniculata
Ammi capillaceum
Amorpha fruticosa
" pubescers
Amsonia latifolia
" angustifolia
Anagallis arvensis
Andromeda ferruginea
" mariana
" nitida
" racemosa
" speciosa, &c.
Andropogon ciliatus
" dissitiflorus
" macrorus
" nutans
" scoparius, &c
Antirrhinum canadense
Apio tuberosa
Aposynum androsaemifolium
Aristida spiciformis
" stricta
Aristolochia serpentaria
" Aronia arbutifolia
" Arum triphyllum
" virginicum
" Arundinaria macroperma
" Asarum virginicum
" Asclepias amplexicaulis
" cinerea
" connivens
" angustifolia
" obtusifolia
" paupercula
" tuberosa
" verticillata
" Ascyrum crux-andraea
" Asimina pygmaea
" Aster carolinianus
Hamamelis virginica
Hedyotis glomerata
Hedysarum canadense
" glabellum?
" nudiflorum
" rotundifolium
" strictum
Helenium antumnale
Helianthemum carolinianum
Helianthus angustifolius
" scaberrimus? &c.
Helenium erythrosperma
Herpestis acuminata
" cuneifolia
" rotundifolia
Hibiscus moscheutos
" scaber
" virginicus
Hieracium gronovii
Hopea tinctoria
Houstonia caerulea
" rotundifolia
Hydrocharis spongiosa
Hydrocotyle umbellata
" repanda
" vulgaris
Hydroclea quadrivalvis
Hypericum angulosum
" fasciculatum?
" nudiflorum
" parviflorum
" rosmarinifolium
" simplex, &c.
Hypoxis erecta
Hypitis capitata
Ilex cassine
" myrtifolia
" opaca
" prionoides
Indigofera caroliniana
Ipomoea nil
" trichocarpa
Iris hexagona
" verna
" versicolor
Itea virginica
Iva frutescens
Jatropha stimulosa
Juglans nigra
Juncus acutus
" acuminatus?
" aristatus
Juncus effusus?
" cehinatus, &c.
Juniperus virginiana
Jussieuca grandiflora
Justicia humilis
Kalmia hirsuta
Krigia caroliniana
Lactanthes tinctoria
Lactuca elongata? &c.
Lamium amplexicaule
Laurus caroliniensis
" geniculosus
" sassafras
Lechea minor
" vilosa
Leersia oryzoides?
" virginica
Lepeium virginicum
Lespedeza frutescens
" stvuei
Liatris gracilis
" graminifolia
" odoratissima
" secunda
" scarosa
" spicata, &c.
Lilium catesbici
" coruscum*
Lindernia dilata
Linum virginianum
Liquidambar styraciflua
Liriodendron tulipifera
Lobelia amena
" cardinalis
" glandulosa
" puberula
" arbutifolia
" cylindrica
" dicurrens
" linearis
" mollis
" pilosa
" virgata
Lupinus perennis
" villosus
Lycoptes angustifolius
Lycoptes virginicus
Lythrum lanceolatum
" lineare
Magnolia glauca
" grandiflora
Malva caroliniana
† Manisuris granularis?
Mariscus cylindricus
" retrofractus
Marrubium vulgare
Marshallia angustifolia
Melananthera hastata
Micranthemum orbiculatum
Mikania scandens?
Mitchella repens
Mollugo verticillata
Monarda punctata
Minocera aromatic
Monotropa uniflora
Morus raba
Mylocarum lignstrinum
Myrica cerifera
" caroliniensis?
Nelumbium lumia
Neottia tortilis
Nuphar advena
Nymphaea odorata
Nyssa capitata
" multiflora
" uniflora
Oenothera biennis
" hybrida?
" pumila
" sinuata
Olea Americana
Onosmodium hispidum
Ophiophrzyza mitreola
" lanceolata
Oplotheca floridana
Orchis blephariglottis
" ciliaris
" nivea, &c.
Orobanche virginiana
Oxalis stricta
" violacea?
Pancratium mexitanum
" maritimum?
Panicum anceps
" crus galli
" geniculatum
" hians?
" italicum
" lanuginosum?
" latifolium
" virgatum
" viscidum, &c.
+ species an nova?
Paspalum dasyphyllum

† I am very doubtful whether the plant referred to, under this name is the plant described by Mr. Elliott. If it is not, however, I think I can safely say, that it has not been described by him at all.
‡ The following is a description of this remarkable plant:
† P. Stem procumbent 1—2 feet long, glabrous, geniculate, pubescent at the joints, compressed, striate leaves 6 to 9 inches long, 3 to 4 lines wide, slightly pubescent above, glabrous beneath, a little scabrous at the edges, expanding horizontally, linear lanceolate, tapering to a point, beautifully marked by purple bands, which fade by age—Panicle composed of alternate spikes, expanding. Spikes compound with spikelets, 2 to 3 flowered,
Paspalum distichum Prunus chicasa Sebattia corymbosa
florianum umbellata gracilis
lave virginiana paniculata
purpurascens Psoralea canescens Sagittaria lancifolia
Passiflora incarnata melilotoides gramineae?
lutea Ptelea trifoliata Salicornia herbacea

Pedicularis canadensis Petroselinum pyenostachyum
Pentstemon levigatum Salix nigra
Petalostemum corymbosum Salvia azurea
Phlox carolina Scabiosa officinalis
" nitrata Ceraquis alba
" pilosa aquatica
Physalis lanceotata catesbeiana
" viscosa? chinquapin
Phytolacca decandra cinerea
Pinkneya pubescens falcata
Pinguicula elatior laurifolia
" lutea lyrata
" pilula nigra
Pinus palustris oltusiloba
" inops? phellos
" teda pumila
Planera aquatica prinus
Plantago interrupta rubra
" virginia sempervirens
Platianus occidentalis Rununculus oblongifolius?
Poa annua pusillus Senecio tomentosus
" eragrostis Rhamnus carolinianus
" quinquifida Rhexia ciliosa
" refracta, &c. glabella
Podostigma pubescens lutea
" virides mariana
Pogonia divaricata virginica
Polygala corymbosa Rhus copallinam
" cruciata radicans
" lutea toxicodendron
" polygama* vernix
" pubescens Rhynchospora cymosa
" purpurea longirostris?
" ramosa Rosa lucida
" setacea levigata
Polygonum punctatum? Rubus trivialis
" sagittatum villosus
" scandens Rudbeckia hirta
Polyprenum punctatum? levigata
Pontederia cordata mollis
" lancifolia Ruellia oblongifolia
Portulacca oleracea strepens
" species an nova tubiflora
Potamogeton heterophyl-

lum Rumex acetosella
Prenanthes virgata crispus, &c.
Prinos ambiguus Sabal pumila
" glabra Sanguinaria canadensis
" Sabattia angularis Sanguinaria canadensis
" chloroideae Sanguinaria canadensis
Prunella vulgaris Salvia virgata.

spikelets on one side of the Rachis, appearing to be in 3 or 4 rows. Calyx, 2 flowered her-
maphrodite and neuter, accessory valve mucronate, all 3 to 5 nerved; nerves green, pubes-
cent. the upper valves purple. stigmas purple. Common in low grounds, flowers in July
and August.—(An embellishment of Elliott.)

This plant I have now growing. It is very similar to the pilosa in the stem and leaves,
but differs entirely in its flowers, which are white and very minute.
Observations on the Soil, &c. of Liberty County. [October,

Stachys aspera
Steuaria virginica
Stillingia legastrina
" sebifera
" sylvatica
Stipa avenacea
Stylosanthes elatior
Styrox grandiflorum
" lewe
" pulvulentulum
Tephrosia paucifolia
" virginiana
Tetragonothea helianthoides
Teucrium canadense
" virginicum
Thalia dealbata
Thysanthes frustescens
Tillandsia bartrami
" usneoides
Tipularia discolor
Tofieldia pubescens
Tradescantia virginica
" rosea

Tragia urens
Trichostema dichotema
Trichodium laxiflorum
Trifolium repens, &c.
Tricophorum cyperinum
Tripsacum monostachyon
Typha latifolia
Ulmus alata
" americana
Urtica capilata
Utricularia inflata
" purpurea?
" setacea
Vaccinium arboreum
" corynbusom
" dumosum
" frondosum
" myrsinates?
" stamineum—
Verbena thapsus
Verbena urticifolia
Verbesina sinuata
Vernonia altissima
" novboracensis

Vernonia oligophylla
" scaberrima
Veronica arvensis
" peregrina
Viburnum nudum
" prunifolium?
Viola cucullata
" palmata
" pedata
" primulifolia
Viscum verticillatum
Vitis rotundifolia
" estivalis
" cordifolia?
Xanthium strumarium
Xyris flexuosa
Yucca filamentosa
" gloria
Zanthoxylon tricarpum
Zapania nodiflora
Zizania mileacea
" palustris
Zizyphus volubilis.

Note C. In order to give some idea of the health of the county, soon after its first settlement, I add the following table, which has been prepared by Mr. J. B. Mallard, from the records of Midway Church.—(Vide his account already cited, p. 20.)

<table>
<thead>
<tr>
<th>Year</th>
<th>Births</th>
<th>Deaths</th>
</tr>
</thead>
<tbody>
<tr>
<td>1754</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>1755</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>1756</td>
<td>14</td>
<td>3</td>
</tr>
<tr>
<td>1757</td>
<td>14</td>
<td>2</td>
</tr>
<tr>
<td>1758</td>
<td>11</td>
<td>6</td>
</tr>
<tr>
<td>1759</td>
<td>20</td>
<td>5</td>
</tr>
<tr>
<td>1760</td>
<td>16</td>
<td>1</td>
</tr>
<tr>
<td>1761</td>
<td>13</td>
<td>6</td>
</tr>
<tr>
<td>1762</td>
<td>13</td>
<td>4</td>
</tr>
<tr>
<td>1763</td>
<td>14</td>
<td>4</td>
</tr>
<tr>
<td>1764</td>
<td>15</td>
<td>5</td>
</tr>
<tr>
<td>1765</td>
<td>2</td>
<td>8</td>
</tr>
<tr>
<td>1766</td>
<td>6</td>
<td>19</td>
</tr>
<tr>
<td>1767</td>
<td>4</td>
<td>21</td>
</tr>
<tr>
<td>1768</td>
<td>6</td>
<td>12</td>
</tr>
<tr>
<td>1769</td>
<td>10</td>
<td>15</td>
</tr>
<tr>
<td>1770</td>
<td>1</td>
<td>10</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Year</th>
<th>Births</th>
<th>Deaths</th>
</tr>
</thead>
<tbody>
<tr>
<td>1771</td>
<td>15</td>
<td>8</td>
</tr>
<tr>
<td>1772</td>
<td>21</td>
<td>14</td>
</tr>
<tr>
<td>1773</td>
<td>18</td>
<td>24</td>
</tr>
<tr>
<td>1774</td>
<td>11</td>
<td>16</td>
</tr>
<tr>
<td>1775</td>
<td>7</td>
<td>11</td>
</tr>
<tr>
<td>1776</td>
<td>17</td>
<td>10</td>
</tr>
<tr>
<td>1777</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>1778</td>
<td>20</td>
<td>8</td>
</tr>
<tr>
<td>1779</td>
<td>..</td>
<td>..</td>
</tr>
<tr>
<td>1780</td>
<td>..</td>
<td>..</td>
</tr>
<tr>
<td>1781</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>1782</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>1783</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>1784</td>
<td>6</td>
<td>5</td>
</tr>
<tr>
<td>1785</td>
<td>6</td>
<td>17</td>
</tr>
<tr>
<td>1786</td>
<td>15</td>
<td>8</td>
</tr>
<tr>
<td>1787</td>
<td>4</td>
<td>8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Year</th>
<th>Births</th>
<th>Deaths</th>
</tr>
</thead>
<tbody>
<tr>
<td>1788</td>
<td>2</td>
<td>35</td>
</tr>
<tr>
<td>1789</td>
<td>11</td>
<td>17</td>
</tr>
<tr>
<td>1790</td>
<td>21</td>
<td>25</td>
</tr>
<tr>
<td>1791</td>
<td>12</td>
<td>34</td>
</tr>
<tr>
<td>1792</td>
<td>3</td>
<td>30</td>
</tr>
<tr>
<td>1793</td>
<td>26</td>
<td>19</td>
</tr>
<tr>
<td>1794</td>
<td>17</td>
<td>11</td>
</tr>
<tr>
<td>1795</td>
<td>21</td>
<td>18</td>
</tr>
<tr>
<td>1796</td>
<td>17</td>
<td>8</td>
</tr>
<tr>
<td>1797</td>
<td>22</td>
<td>14</td>
</tr>
<tr>
<td>1798</td>
<td>26</td>
<td>22</td>
</tr>
<tr>
<td>1799</td>
<td>16</td>
<td>17</td>
</tr>
<tr>
<td>1800</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>1801</td>
<td>18</td>
<td>37</td>
</tr>
<tr>
<td>1802</td>
<td>11</td>
<td>20</td>
</tr>
<tr>
<td>1803</td>
<td>22</td>
<td>22</td>
</tr>
</tbody>
</table>

I would remark that this table includes the deaths, from casualties, as well as from disease; but of course those from the former, are comparatively few.

Note D. The following quotations from the Problems of Aristotle, will shew that he also regarded wet and rainy seasons as productive of diseases:

"1. What is the reason that, if a rainy and moist spring follow upon a cold
winter, the succeeding summer becomes sickly, fevers and inflammation of the eyes prevailing?

"2. What is the reason that, if a dry and cold spring follow upon a moist and rainy winter, both spring and summer become sickly?

"3. What is the reason that, if upon a dry and cold summer a rainy and moist autumn follow, headaches are frequent during the succeeding winter, and hoarseness and coughs, terminating in consumption?

"4. What is the reason that, if, after a cold winter, and a rainy and moist spring, the summer be very dry, autumn becomes most especially fatal to little children, whilst among the rest of mankind, dysentery and quartan ague are of frequent occurrence?

"5. What is the reason that, after a rainy and moist summer and autumn, a sickly winter follows?

"6. What is the reason that, if, in consequence of the heat of the sun, evaporation rise from the ground in large quantities, the year becomes pestilential?

"7. What is the reason that those years are always sickly, when the small frogs are very numerous?"

It were perhaps well, if, like Aristotle, we paid more attention to climatic influences in the ætiology of disease, and less to the undefined and undefinable malaria or miasmata arising from the decomposition of vegetable substances!

The following extracts will shew his opinion, also, in regard to the relative or comparative influence of seasons:

"1. What is the reason that, although men are more afflicted with diseases during summer, the sick die in larger numbers during winter?

"2. What is the reason that spring and autumn are sickly? Is it because changes produce diseases?—Autumn is more sickly than spring.

"3. What is the reason that, in winter there are less diseases than in summer, but that they are more fatal in the former season?

"4. What is the reason that burning fevers most frequently occur in autumn and winter, i.e. during the cold seasons; and chills in summer, when the weather is hot?"

ARTICLE II.

Cimicifuga in Nervous Diseases. By H. V. Wooten, M. D., of Lowndesboro', Ala.

Of all the diseases which the medical practitioner is called upon to treat, none are so puzzling to his skill, or exhausting to his patience, as those usually denominated nervous: their pathology is less understood—their therapeutics is less reliable, and consequently, their treatment is more empirical and less satisfactory, than that of any other class of diseases. Under these circumstances, it is not surprising that any new remedy, that is respectably recommended, or even suggested, for any of these diseases, should be so readily tested by the physician.
In 1839, Dr. Young, of Pennsylvania, (Am. Jour., Nov.,) reported a few cases of chorea, which he cured by the use of the cimicifuga, and suggested its use in other nervous affections, as epilepsy, &c. Not long after I read his paper, I was called upon to treat a case of epilepsy, and from the embarrassment and failure which I had usually met with, in the use of other remedies, I determined to give the cimicifuga a trial. My success in the case induced me to employ the remedy in other cases—all of which I will give.

Case 1st. A girl, of delicate constitution, aged 11 years; had been subject to the "fits" for six months, at irregular intervals, at first about once in two weeks, but of late more frequently. The fits were not long, but violent, and usually left the patient in a complete stupor for a few hours. Her general health was pretty good, but of late the intellect had been growing obtuse and irregular. Purgatives, indigo, blisters, assafetida, and all the usual routine of remedies had been used in the case, without effect. I gave a purge of calomel and aloe, which acted thoroughly. I then prescribed the pulverized cimicifuga in doses of 5 ss., to be given morning, noon and night; and the purgative of calomel and aloe to be repeated twice a week. During the first two weeks of the treatment, she had two fits, but stated that her feelings were much better, and the obtuseness of intellect had disappeared. The treatment was continued, increasing the dose of the powder to 5 ii., and giving the purgative once a week for six weeks longer, during which time she had no fit; her general health and strength appeared much improved. One year afterwards, she had had no return of the disease. Since that time I have known nothing of the case.

Case 2nd. The mother of the girl above mentioned, aged about 40, of slender frame, but good general health, had been subject to epileptic fits for about eight years; at first occurring about once a month, but for the last three years oftener, if the patient was fatigued, or in any way excited unusually. I put her under a similar course of treatment to that of case 1st. For four weeks she had but one fit, and it was a light one; but she continued the remedy until it seemed to lose its power on her system, and she was not cured. She discontinued the medicine, and I know not what became of the case.

Case 3rd. A girl, aged 13, of good health and full habit of body, was seen to fall from a height of a few feet, and was picked up in a stupor, with her extremities spasmed. The symptoms were attributed to an injury supposed to have been received in the fall; but
Cimicifuga in Nervous Diseases.

none could be discovered, though the head was shaved, and well examined. She was bled freely; cold applied to the head, and blisters along the spine. The fits ceased, but returned again in about a week, and continued to recur about once a week for three months; at the end of which time I first saw her. Of late her paroxysms had become more violent and exhausting, and were preceded by a fit of mania, during which she would scream violently, and endeavor to destroy everything in her way. This would last about fifteen minutes, and would end in a stupor, which would last about the same length of time, when the epileptic fit would ensue. During the intervals, her intellect appeared tolerably good, and I could discover no particular disease or organic disorder about her, except of the nervous system. When she would attempt to stand erect and still, she exhibited a restless eye, and a slight tremor of the extremities. I was accidentally present when one of her paroxysms occurred, on which the history of the case was given me, with a request for a prescription. It occurred to me that the fall was more likely the effect than the cause of the fits, and as no physician was in attendance on the case, nor had been for several weeks, I gave a prescription founded on that view of the case. Her general appearance was good; muscular and vascular systems sufficiently full and active; pulse 100. I bled her $\frac{3}{12}$, gave a purgative of calomel and aloes, and continued the same prescription as case 1st. She had but two paroxysms, about five days apart, after she commenced the use of the remedies, and they were light, and without the antecedent mania. She had, when I first prescribed for her, a long blister on the dorsal spine. The course was steadily pursued for six weeks, when the patient appeared well, and the medicine was discontinued. She remains well to this time—three years. It may be proper to state, that neither this patient, nor case 1st, had menstruated before they came under my treatment, nor had they done so when it ceased.

Case 4th. A child, aged 4 years, was seized with "fits," which occurred once every day, at irregular hours, for three days. The symptoms were attributed to worms, and the child was drenched with the usual amount of "worm physic." The fits ceased, but returned in four days, and continued to recur about twice a week, for three weeks, when I saw it. It was pale, somewhat emaciated; appetite good, but digestion much impaired; abdomen tumid, &c.

I gave x. grs. blue mass, with ii. grs. Dover powder, which seemed
to act well upon the intestinal secretions. I then prescribed the cimicifuga in the following form:

Cimicifuga, powd. \(\frac{3}{8}\)iss.
Water. \(\frac{3}{8}\)iss. Oiss.

Boil to Oi.—strain, and add loaf sugar \(\frac{3}{8}\)iss. Of this, give 5 i. three times a day.

This was continued three weeks,—the child had no more "fits," and its general health became very good.

Of the above cases, three at least were epilepsy; three of them were cured, and one scarcely benefitted. So far as these cases go to establish the character of the cimicifuga as a remedy in this disease, it would appear that it is not to be relied on in cases of several years' standing; but that in recent cases, it is a valuable remedy, and worthy of diligent trial.

I could not say, positively, that the 4th case was epilepsy, as I did not have an opportunity of seeing a paroxysm; but from the account given me of it, I felt convinced that it was truly epileptic in its character.

The account which I have given of the above cases, is not so minute and full as I would wish it to be; but every physician acquainted with practice in the country, over a scope of many miles, will understand the reason, why it is necessarily as it is.

The cimicifuga seems to act as a tonic to the general system; but its peculiar and most valued effects are displayed particularly on the nervous system. To this system it imparts permanency of tone, and equanimity of action. I have used it in several cases of delicate females, whose nervous action was much disordered, producing hysteria, and its kindred disorders. I have also used it with great benefit, in cases of dry, hacking cough, occurring in persons of weak habit, and disordered nervous power, with neuralgic pains about the chest. I have, myself, been astonished at its effects in restoring the vigor and healthful action of the system in such cases.

I could detail such, but it is perhaps unnecessary. I will only remark, further, that in using the cimicifuga, it is altogether important, though often difficult, to get that which is good and pure.
ARTICLE III.

A Case of probable Extra-Uterine Pregnancy.

The interest at present existing in the profession on the subject of Extra-uterine Pregnancy, has induced us to solicit and to place on record, the following facts.—Edts.

OXFORD, Ga., March, 1845.

Dr. Joseph A. Eve, Prof. of Obstetrics, &c.:

Dear Sir—Your views are desired in relation to an interesting case connected with the branch of the profession to which your attention has been particularly directed, for some years. Early in March of last year, I was called to a negro woman, belonging to Mr. Worrill, of this place, who complained of pain and tenderness in the hypogastric and iliac regions of the right side: upon examination, I found the parietes of the abdomen for a circumscribed space indurated, as if covering a schirrous tumour as large as an orange, the hardness, or apparent hardness of the skin was peculiar; and the tumour, which appeared intimately connected with the skin, was distinctly perceptible in the iliac region.

I bled, blistered and gave gentle purgatives, for the subduction of inflammation, with decided benefit to the patient; the pain and febrile symptoms subsided, and she was able in a short time to go about; the hardness, however, and likewise the tenderness or pressure continued. The enlargement of the tumour progressed gradually, and the woman supposed herself pregnant. She is about forty years of age, and her youngest child about eighteen years old.

She remained in feeble health, often in bed, until September, when her strength gave way and she was again prostrated. I found her apparently in labour, her pains, however, short and ineffectual; upon examination per vaginam I was satisfied that the uterus did not contain the foetus; after some twenty-four hours unavailing efforts to bring forth, her pains subsided, lactation supervened, but the abdominal enlargement remained unchanged. She was soon again able to attend to business, and has continued about ever since, with occasional short intervals. Within the last two months the catamenial discharge has returned which was before interrupted. At my request,
A Case of probable Extra-Uterine Pregnancy. [October,

my friend, Dr. Gaither, visited her with me a few days ago. The size of the tumour is about that of the gravid uterus at six months; it extends up to the epigastrium, and has inequalities to the touch which very closely resemble the prominent points of a foetus;—it seems to occupy the centre of the abdomen, not being confined to either side, and has neither increased nor diminished for several months. The woman's general health is tolerably good. She is a valuable servant, and her owners feel great solicitude on her account, not knowing what may be the final result. I am deeply concerned as to the issue, and should be thankful for your opinion with respect to its nature, and the most advisable course to be pursued. I am inclined to view it as a case of extra-uterine pregnancy, but do not feel certain whether it may not be ovarian schirrous or dropsy, as some of the earlier symptoms seemed to indicate: in either case, would you advise an operation?

Your views at length, as I have said, will be thankfully received, and highly appreciated.

Very respectfully, yours,

George G. Smith.

AUGUSTA, March 27th, 1845.

Dear Sir—Your very interesting letter of the 19th instant, should have received an immediate reply, had not the pressure of business and previous engagements, absolutely prevented me.

After the most attentive and careful perusal, I cannot arrive at any other conclusion than that to which you have come, that it is a case of extra-uterine pregnancy.

With respect to the peculiar hardness of the skin over the tumour, I cannot account for it, but do not suppose that it is connected with or depend on the tumour within.

My opinion is most decidedly against undertaking an operation unless indicated by nature herself; or as it were in co-operation with nature. When she manifests an endeavor to make a way for the foetus to escape, by instituting the process of ulceration, the surgeon I think may, with propriety, and often with advantage, anticipate the more tardy course of spontaneous ulceration, by making an opening in advance or enlarging that which may have been commenced, through which to extract the foetus and secundines.

But when nature is quiescent, I am decidedly of opinion that surgery should not interfere.
Time has permitted me to refer only to a very few of the most recent authorities.

M. Chaillly remarks—"The danger of the operation is far greater than in the gastrotomy practiced in cases of normal pregnancy. The placenta does not separate of itself from the internal surface of the cyst; it adheres so intimately to it that it seems to be an integral part of it: its extraction is therefore very difficult and dangerous."

"Again, how can we decide to perform this operation when we know that the unhappy woman, if she should not die immediately, will undoubtedly sink gradually, and in the midst too of the most excruciating sufferings."

"In a word, it is my opinion, that if the labour cannot be quieted by opium, the cyst being intact, nothing should justify an operation; and the objection, if possible, is still stronger, should the cyst be ruptured."

"Art cannot profitably interfere until the first phenomena have passed by, whether there has been rupture of the cyst or not, and there should be no haste; the cyst should be allowed time for a new formation, and this is a slow process, and then the operation is only to be attempted in order to prevent imminent danger, or to relieve the woman from habitual suffering which renders life a burden to her."

M. Moreau admits that very little assistance can be rendered, and that it would be worse than rash to attempt an operation before the rupture of the cyst, but he declared himself decidedly of opinion that, if called very soon after its rupture, gastrotomy ought to be performed; he thinks the danger of haemorrhage has been exaggerated, and that it promises more for the safety of the mother as well as the child, than abandoning the case to the unaided resources of nature.

Of all the recent authors with whose writings I am familiar, M. Colombat expresses himself most decidedly in favor of an operation. After weighing the arguments and opinions of authors for and against it, he observes—"However it may be in regard to the different opinions we have just mentioned, we believe that the operation ought to be performed, even after the rupture of the cyst, and that in general we ought not to wait until the symptoms of peritonitis shall have declared themselves, because in that case we are almost sure to see the child and mother perish, when by operating earlier, we might perhaps have saved both."

Although I deemed that candor required I should give the opinions
of Moreau and Colombat, which militate somewhat against my own, I am decided in my opposition to an operation, except under the circumstances already stated, and feel myself satisfactorily sustained, not only by the authority of M. Chailly, but also by that of Dr. Churchill and Dr. Lee, whose views I will give you in their own words.

"If we find, after a time, that any effort is made to remove the fœtus, by the formation of an abscess or fistulous communication and discharge of foetal bones, it may be advisable in some cases to assist the process by enlarging the opening in the abdominal, vaginal or rectal parietes, but this should be done with great judgment and care, as serious hæmorrhage may ensue, and we are never to forget that nature is generally competent to complete the process she commences."—Churchill.

"In the treatment of these cases, the best plan is to subdue the inflammation by leeches and other means, and when the bones approach the surface, to make an opening through the abdominal parietes, or to enlarge the natural opening of these, and extract the bones like any other foreign bodies lodged in the abdomen. Even if the diagnosis in these cases of ventral gestation were more perfect than it is, I do not think we would be justified in performing the operation of gastrotomy with the view of extracting the child alive."—Lee.

In addition to the many cases on record in which women have lived several years—some even twenty and thirty years—with an extra-uterine fœtus in the abdomen, Dr. Bacchetti, of Pisa, has recently related an extremely interesting case of a female who in 1836 manifested signs of pregnancy, and in the ninth month signs of true labour, which after recurring fifteen days successively, subsided entirely, the volume of the tumour continuing of the same size.

In 1838, and again in 1841, she became pregnant, and was happily delivered each time. Ten months after the last birth the tumour in the abdomen became painful, and she gradually sunk in 1842. On examination, post-mortem, a male fœtus was found entire with the exception of the bones of the cranium which were separated.

This is a truly interesting subject, and although pressed for time, I dislike to dismiss it. I would be happy to hear from you again, and learn the progress and termination of this case; in the mean time I do not think you can adopt any better course than that you have pursued to combat symptoms as they arise, and endeavor to improve and support her general health and strength.

With highest respect, your obedient servant,

Joseph A. Eve.
PART II.—REVIEWS AND EXTRACTS.

* * * Previous to April, 1841, I had never exhibited quinine in larger quantity than twenty-five grains, in twelve consecutive hours. I have a distinct recollection of the circumstances under which, with a trembling hand, and doubting hope, I gave the quinine for the first time to the extent specified. The patient was a lady of great worth to the community and her family, and the disease, which made its approach in the shape of remittent bilious fever, had lapsed into intermittent, assuming a malignancy of aspect which awakened apprehensions for the issue. I did not leave the bedside of my patient during the continuance of the last paroxysm, for it presented all the symptoms which indicate serious tendency to congestion; and I was persuaded that if another could not be prevented, she would not survive its termination. Under this impression, and having confidence in the medicine, (if it could be introduced in sufficient quantity without incurring the risk of injurious effects,) I resolved to disregard the rule under which I had hitherto acted, and to exhibit the quinine to an extent to be determined by its effect upon the system, given in divided doses. Commencing, therefore, as soon after the subsidence of the paroxysm as in my judgment was safe, I gave the lady four grains of sulphate of quinine every two hours, (increasing the last dose to five grains) until twenty five grains had been given—anxiously watching the effect of each dose. With a degree of satisfaction I have seldom felt under like circumstances, I witnessed the index of the clock pass the mark which had indicated the period of approach of the previous paroxysm—for I felt that my patient was safe. Her convalescence dated from that time.

Subsequently, whilst engaged in private practice, and for the first years of my service in the army, I acted under the rule comprised in the particulars of the case to which I have alluded.

In 1834, whilst on duty in Arkansas, I witnessed many cases of the malignant bilious fever of that country. The cases which came under my charge were treated in the usual way. Quinine entered into the list of remedies, but it was only exhibited under the canon, when an approach to intermission, or a distinct remission, was apparent. One case, however, occurs to me as an exception to what I have stated, which I will relate.

Lieutenant (now Captain) H. of the 7th Regiment of Infantry,
whilst on detached service in August or September, sustained an attack of remittent bilious fever, and with a large majority of his command in like condition, was brought into Fort Gibson. For several days the fever pursued a regular course, and a favorable crisis was hoped for. Suddenly, however, a total change succeeded. The paroxysm anticipated the usual hour of incursion, and was characterized by all the symptoms of grave congestive fever,—the brain being the principal seat of congestion. In one hour after the occurrence of the paroxysm, the sensorial functions were abolished, and very soon profound coma supervened; the extremities were cold as marble,—the pulse almost extinct,—the sphincters of the bladder and rectum utterly paralyzed,—the respiration labored and irregular,—the eyes upturned and injected;—in fine, the patient seemed in the agonies of death. All my sympathies being awakened for my friend, and all my anxieties for my patient, I hastened to the encounter; but I must confess with painful misgivings of my ability to contend successfully with the disease. Having at that time no precedent or authority for the exhibition of quinine in large doses under such circumstances, I gave it in divided quantities, in union with calomel and camphor, to the extent in all of twenty-five grains;—applied cold to the shorn head,—epispastics to the thighs, sinapisms to the legs and arms, and, if I mistake not, opened the temporal arteries, and applied cups to the neck. Under this treatment the patient gradually recovered, with the loss of his hearing—almost total for some time, and though ultimately greatly improved, audition is to this day somewhat defective.

In this case I confined the use of the quinine within the limit which my previous experience had taught me was safe, under dissimilar circumstances, and I shall never cease to award to it the credit of having saved to his friends, and to the service, a most worthy and meritorious officer.

If it be said that the favorable result in this case was due to the other remedies employed, and that quinine was not the efficient agent in accomplishing the cure, I can only say, in support of its claims, that I had never, at that time, witnessed recovery in a case apparently so utterly desperate, and that since then, I have only known a fatal issue averted when the quinine has been administered in large doses.

In 1840, I was assigned to the Florida army, and ordered on duty at Fort Heileman, Garey's Ferry. I arrived early in October, and succeeded to the charge of a full hospital. A majority of the cases (excluding those of intermittent fever), were bilious remittent with manifest tendency to irregular sanguineous determinations, and local congestions. Not yet having met with any notice of the modern practice with the quinine, and having as an example of the safety and advantage of its exhibition during the paroxysm of fever, only the solitary case of Captain H., I did not rely upon it as a principal agent, but confined its exhibition to the apyrexial period of congestive intermittent, and the period of remission, in the more continued...
forms of fever. My late experience in the use of quinine has induced me to marvel at the over-caution with which I exhibited it on this occasion and formerly, and I can hardly repress a smile when I bring to my mental vision the spectres which my imagination conjured up.

In November, 1840, I joined the 1st Regiment of Infantry, which had recently taken post at Sara-sota, on the western coast of Florida, a position which combined in an eminent degree all the circumstances calculated to affect unfavorably the health of troops. During the winter, the command suffered, only as might have been anticipated, from its exposed situation, taking into consideration the fact that the regiment had been three years in the field, and deprived for the last few months at least, of a full supply of vegetable aliment. Intermittent fever prevailed to a considerable extent among the troops, and was interrupted, ordinarily, by the use of quinine in doses of five grains, repeated three times during the interval.

My largest experience in the use of quinine having occurred during my service with the 1st Infantry, and in the quarter ending June 30th, 1841, I beg leave to quote from my Report to the Surgeon-General's office, for that period. * * * * "That the 1st Infantry has encountered disease since the last Quarterly Report, the present will abundantly testify. A strong scorbutic diathesis pervaded the command from the commencement of winter, which imparted to most of the forms of disease which occurred during that season some of the features of its own character. Dysentery, with tendency to total cachexia, and intermittent fever, constituted the bulk of the Sick Report. About the 1st of April, there occurred more cases of remittent fever than we were prepared to expect so early in the season, but surprise gave place almost to consternation, when, towards the close of the month, there were added to the sick list twenty cases per diem of congestive fever."

The post at Sara-sota was abandoned on the 2nd of May. The sick, to the number of two hundred, or more, were taken to Cedar Keys, and ultimately transferred to Cantonment Morgan, where, the Report goes on to state, "after considerable delay, and some hurtful exposure, we are very comfortable in hospital." * * * * "The seat of congestion in this fever varied in different cases. In some the brain, in others the liver and spleen, and in some others the lungs, constituted the principal seat of engorgement, as was evidenced by the symptoms, and by autopsic examination in the fatal cases.

"Excessive prostration of physical power occurred simultaneously with the attack, and the mental functions sustained early impairment. The whole surface of the body, but particularly the extremities, became preternaturally cold after the first paroxysm, (in which, however, but a small degree of increased heat was developed). A cold, clammy, or limpid perspiration accompanied this condition of the skin. The tongue, at first pale, and indented, sometimes smooth and shining, became dry and hard; the teeth were encrusted with sordes; the pulse was frequent, irritable, and often intermittent; and the
Sulphate of Quinine in Diseases of the South. [October,

alvine discharges watery, and sometimes bloody, with tenesmus. The whole surface of the body presented a shrunken and contracted appearance; the respiration was hurried and irregular; the patient, in fine, presented that indescribable picture of wretchedness peculiar to those forms of disease, in which the ledentia impress with such intensity as to overwhelm the vital energies, and prevent the development of normal reaction.

"The treatment need not be fully detailed.

"But though my observation during the progress of this fever, corresponds with all my previous experience in regard to the importance (to say the least,) of the lancet as a remedy in advanced congestive fever, and will induce me to banish it from my list of curative means in such cases in all future time, I am happy in having been directed to a practice, of which, if I obeyed the impulse of my feelings, I should express myself in terms of extravagant commendation. I allude to the exhibition of sulphate of quinine in twenty, thirty, and even forty grain doses, alone, or in combination with calomel. I will content myself for the present with saying, that in numerous instances, it has seemed to rescue the subjects of this form of disease from the most impending danger." * * * * "It is due to Drs. Harvey and Randall, of the army, to admit that I entered on this practice at their urgent suggestion,—for I will confess that I entertained much misgiving of its safety. My doubts are now utterly dissipated, and I would give a half, or even a whole drachm of quinine, with as little hesitation as the old-fashioned 'ten and ten' of Dr. Rush."

Having no precise statistical record in my possession of the cases of congestive fever above alluded to, I can only state, in general terms, that the cases of disease to which I refer, in the Report, as exposed to the 'most imminent danger,' and to whom the quinine was administered in large doses, with advantage, could not have been less than fifty. I will further state that it was the sulphate of quinine that I prescribed, that it was obtained in every instance from the Army Medical Purveyor, and that in my opinion it was pure.

My subsequent experience with the article relates principally to its use in the remittent and intermittent fevers, which came under my notice in the summer and autumn of 1842, in Florida, a few cases only of congestive fever having presented themselves during this year. As a remedy in all these cases, the article fully sustained the favorable character it had previously established in my estimation.

I am not aware that I have discovered any disparity of effect in the action of the remedy determined by the different states of the system, in reference to its tonic or atonic condition. I have never exhibited it when there seemed to be present an inflammatory diathesis, (contra-distinguished from a febrile condition,) nor would my recent experience induce me to rely with confidence on the quinine, as a supporting agent, in a prostrate condition of the system, unless the prostration could be regarded as the effect of the febrific agency (malaria,) still in operation.
I have not witnessed injurious effects from the medicine in any case that I can call to memory, and the only unpleasant symptoms that I have observed to follow its use, were more or less buzzing in the ears, and, occasionally, slight dizziness. These symptoms have uniformly subsided with the paroxysm.

Modus Operandi of Quinine.—It is said that the cotemporaries of the Countess of Cinchon—the Friars who first published the fame, and disseminated the use of the Peruvian Bark as a remedy for intermittent fever,—regarded it as a specific, perhaps as an antidote to the poison of malaria; and modern observation seems to have furnished some reasons for doubting, if the speculations which have been indulged by their successors have led to any better conceptions of the modus operandi of its efficient principles. With the profession it is dangerous at the present day to talk of "specifics," or even of antidotes, unless we are ready with a philosophical rationale of every step in the process by which the end is attained;—yet, however humiliating to the pride of science, we must admit that there are many things connected with the principles and practice of medicine that we do not comprehend. Individuals form theories, they indulge in elaborate and ingenious hypotheses, and admire the creations of their fancies—the fictions of their closet speculations, until they actually persuade themselves, and others too, that their conclusions are the result of legitimate deductions from ascertained facts,—that even the spirit of Lord Bacon himself presides over their deliberations and has affixed its seal to the truth of their philosophy. These systems are destined to last until some successful revolutionist in medicine saps their foundations, to erect on their ruins a superstructure no less comely to look upon, but awaiting, in after time; a similar fate; because speculations, and not facts, constituted their basis. Thus it has ever been since the dawn of medicine, and we apprehend its future historians will but record a succession of like events, until it shall have established for itself a place among the fixed and certain sciences.

We would not controvert the truth of the position that medicine has made great strides in the way of improvement, within the last century. On the contrary, we are proud to boast that every year has added to the resources of the art; for genuine inductive philosophy has infused its spirit into the investigations of many of its ardent cultivators. But there are many secrets yet undivulged in philosophy and therapeutics, and perhaps a precise and definite conception of the manner by which certain medicines effect a cure in diseased conditions of the system, will remain among the desiderata until medicine shall have received the last finishing touch from the hand of science.

We mean these remarks as prefatory to the expression of a doubt whether the bark or its proximate principles, arrest intermittent fever, and other forms of febrile disease dependent on miasmatic origin, by virtue of the tonic property inherent in them. We are not prepared
fully to deny that the medicine possesses tonic properties; it is an opinion sanctioned by the concurrent belief of the profession for more than a century. But my late experience authorizes and inclines me to believe that the remedy exercises over fevers of this genus a peculiar and specific control, independent of, and distinct from, any effect which it may be presumed to have upon the tonicity of the muscular fibre.

Some practitioners, whose experience in the use of this medicine has been by no means inconsiderable, have been led by observation of its effects, to class it among the Sedantia, and several plausible articles have been written in support of this view of its properties. It must be admitted that if I were reduced to the alternative of adopting one or the other of these opinions in regard to the character of the medicine, my late observations would incline me to entertain the latter—although some unexplained facts would still stare me in the face, and perplex my understanding.

They who contend that its curative agency is due to a direct effect on the tonicity of the muscular fibre, would prescribe its use in all cases where this vital property, or the contractibility of the muscular system, might be presumed to be in an exalted condition. But the physician experienced in diseases of southern climates will tell you that he is in the practice of administering it when the condition of these vital properties is, seemingly at least, above par. For instance, he exhibits the article at the very height of the paroxysm of the remittent fever of his climate, and finds as a result of its action, a reduction in the force and frequency of the pulse,—a diminution of animal heat,—a moist condition of the skin,—a subsidence of pain and restlessness; in fine, a sudden conversion from febrile disturbance to fair convalescence. Now, if the experience and observation are right, can the theory be otherwise than wrong? On the other hand, those who maintain that the remedy acts by sedation, do not hesitate to exhibit the article when the powers of life are depressed to the utmost limit compatible with existence; and they aver that its agency is curative under these circumstances. True it is that the writer has himself frequently given the quinine in both of the conditions stated, and in both his experience teaches that advantage resulted from the practice. He has witnessed a decided improvement to follow the exhibition of 3ij. of quinine, repeated in two hours, in advanced congestive fever, when the condition of the case was characterized by a lethargic state of the sensorial functions, verging on coma,—cold extremities,—cool surface, bathed in limpid perspiration,—dry and pallid tongue,—feeble and fluttering pulse, &c. And again, whilst on duty in Florida, in the summer of 1842, in charge of the General Hospital; it was his usual custom, after attentive observation of the safety of the plan, to exhibit twenty grains of quinine at any period of the paroxysm of the remittent fever of that country, and he is safe in declaring that the practice was successful—as the Quarterly Report to the Surgeon-General's Office will
testify, not a single death from remittent fever having been reported during the season, nor from its sequelæ.

In southern climates, where high atmospheric temperature prevails, the system, it is well known, becomes languid and relaxed. This condition is the effect, no doubt, of the exhausting influence of the prolonged action of caloric. Indirect debility is induced, and with this loss of tone in the system, its irritability is exalted. Excessive mobility is impressed on the whole apparatus of life. The pulse is quickened, morbid sensibilities and new susceptibilities, mental and physical, are awakened, and hence do the "children of the sun" become distinguished for all that relates to temperament and disposition—all that constitutes peculiarity of sectional character, from their cool, calculating, deliberate brethren of the North.

But if this is true in regard to the system in health, it is no less so when it is under the influence of morbid agents; and it might, with some show of plausibility, be maintained that, in this condition, tonics operate indirectly by sedation,—quieting excitement by imparting tone. And thus, perhaps, would they who entertain this view of the medicinal properties of the quinine reconcile their notions of it with its effects, as illustrated in the cases of fever in which it has been given with advantage in the pyrexial period.

It is said that recent observations in other countries have demonstrated the advantage of quinine in acute inflammations, rheumatism, and other forms of disease in which stimulant tonics are, confessedly, not only inappropriate, but manifestly pernicious. We have the testimony of such men as Morton, Fothergill and Haygarth, of the last age, in favor of Peruvian bark in inflammatory rheumatism; and the present professor of midwifery in the University College, London (Dr. Davis), furnishes unequivocal evidence of the paramount advantage of the remedy in such cases. (London Lancet, February, 1841.) The writer has no experience of its effects, when exhibited in such conditions of the system, but if time should verify its claim to confidence in these diseases, it will but furnish another argument in support of the position assumed, that its medicinal properties are not fully comprehended or established.

There are strong reasons for believing that the antimonial medicines possess direct febrifuge virtues, independent of any influence they exert over the heart and arteries by their mere nauseating effect upon the stomach.

The action of mercury in the cure of lues venerea, has never been explained in a way that can seem satisfactory to those who profess to exhibit no article of medicine, the precise physiological effect of which they do not understand. To designate a whole class of remedies as "alteratives," is but to admit that they produce their effects in some occult way which we do not comprehend,—in fact, I might go on to enumerate almost one-half of what is contained in the armentarium of physic, and include the whole in this category,—but I will conclude what I have to say in regard to the molus operandi.
of quinine in the fevers of malarial regions, and write myself the advocate of the notion entertained by the Jesuits, to-wit: its agency is specific.

It is thought that this article, in combination with mercurials—calomel particularly—accelerates the supervention of ptyalism. I have no doubt of the fact. I am disposed to ascribe it to a presumed chemical decomposition in part of the combined articles in the stomach, and a new arrangement by which the activity of the mercurial would be increased; or, if the chemists advise that no incompatibility exists between calomel and quinine, and that no such presumed change can take place in the stomach to account for the alleged fact, then I would suggest that the latter article facilitates the mercurial action simply by counteracting the morbid impression of the febrific agent, and the diseased condition hence resulting, by its specific effect, thus bringing the susceptibilities of the system to a condition approximating the healthy standard; for it must be admitted that first, in proportion to the intensity of morbid action, is the difficulty in establishing the constitutional operation of the mineral in any given case of disease.

Has the free use of quinine increased the disposition to diseases of the bowels—e. g., Diarrhoea and Dysentery?

Broussais, in his "Chronic Phlegmasia," has shown, as we think, very satisfactorily, that long-continued atmospheric heat, combined with moisture, has an invariable tendency to induce chronic inflammation of the mucous coat of the larger bowels, thus giving origin to diarrhoea and dysentery, with ultimate liability to ulceration of the colon and rectum. High and long-continued heat and moisture distinguish the climate of Florida; and when it is remembered that the centripetal tendency of the fluids, in the cold stage of intermittent, (so frequently recurring among the troops serving in that Territory,) determines congestive accumulations and irritations in the internal organs, we think that the prevalence of diarrhoea and dysentery, under these circumstances, is susceptible of explanation without charging anything to the account of quinine.

No pathological view of these diseases can, it is believed, be correct which is irrespective of the condition of the skin. It is fair to presume that this organ is primarily impressed, and that the lining membrane of the prima vix is implicated in virtue of the intimate sympathy which is acknowledged to exist between it and the former. The persistence of the bowel affection is then probably due to the derangement of the dermoid apparatus, and, until the latter is restored to its integrity of function, the morbid condition of the bowels can hardly be expected to subside under any plan of treatment.

Broussais has remarked somewhere that when the skin in these forms of disease presents a straw-colored appearance and inelastic condition, ulceration of the mucous coat of the bowels may be apprehended; and that, in a large majority of such cases, a fatal result will ensue.
A very enlarged experience with the bowel affections of Florida has impressed strongly on my mind the opinion, that there are few forms of disease in the catalogue less amenable to the resources of the art.

Post-mortem examinations were instituted in a large majority of the fatal cases in the General Hospital at Cedar Keys, as well as the Post Hospitals at different times under my charge in Florida. My observation teaches that the liver and spleen, less frequently presented evidence of diseased condition, than is usual in sections of the country where miasmatic causes of disease prevail. The proportion of cases in which these complications existed, was infinitely smaller in Florida than I had previously observed in Arkansas. Even the swelled spleen, so common in other aguish districts, was a rare spectacle.

I can readily conceive, in explanation of this apparent immunity from congestive enlargements, and from other obvious disease of the liver and spleen, that, where ulceration exists in the larger bowels, in obedience to the law, pathological as well as physiological, "ubi irritatio, ibi affluxus," the fluids impelled towards the central organs, (under circumstances calculated to produce irregular distributions,) are diverted to the point where irritation exists in greatest intensity. In other words, the irritation of the bowels serving as a "diverticulum," secures the liver and spleen from an influx of blood, sufficient to derange their healthy functions, much less to leave, after death, appreciable traces of organic lesion. I have no reason, therefore, to think that the use of quinine had any agency in inducing acute and chronic affections of the liver and spleen.

With the exception of some few cases of acute dysentery, the fevers above alluded to, and some cases of inveterate ophthalmia, the great majority of the sickness which came under my notice while serving in the Territory of Florida was of a chronic character, and mostly consisting of the protean forms of malarial disease.

Surgeon General's Office, July, 1845.

Tables of the Mortality after Operations. By Thomas Inman, M.D.
(From London Lancet.)

The history of the following tables is this. A year or two ago, I was struck with the number of deaths occurring after amputation, and about the same time met with Dr. Lawrie's and Mr. Phillips' paper on the same subject; from that date I have been occasionally jotting down the reports I have met with in the different periodicals, but did not do much till a few months ago, when circumstances induced me to extend my inquiries, and to comprehend other capital operations besides amputation.
As I have been myself considerably surprised by the results, I have thought it worth while, for the information of others, to give them a wider circulation.

I doubt not that many living operators, if they ever happen to cast their eyes over the columns, will find I have in some degree mistated the results of their operations. This arises from many of my notes being taken long ago, and consequently representing what was correct only at the time they were written. The table would have been much more perfect had I been able to obtain an authentic account of the practice and experience of our most eminent living surgeons.

I cannot help thinking that it would be exceedingly beneficial, if all the hospitals in England, especially the larger ones, would publish an annual record of their operative practice, such as is given for Scotland in the "Edinburgh Medical and Surgical Journal," for January, 1844, No. 158.

Table shewing the Average Mortality of Amputations generally, including secondary, primary, for accident or disease.

<table>
<thead>
<tr>
<th>Where occurring, or by whom reported</th>
<th>No. of Cases</th>
<th>Deaths</th>
<th>Proportion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cases collected and reported by Mr. Phillips, occurring in France, Germany, America and England</td>
<td>640</td>
<td>150</td>
<td>1 in 4.1-8</td>
</tr>
<tr>
<td>Cases collected from the various journals by the same author, all probably occurring in Britain</td>
<td>308</td>
<td>76</td>
<td>1 in 4</td>
</tr>
<tr>
<td>Private notes of London hospital surgeons, by the same author</td>
<td>107</td>
<td>28</td>
<td>1 in 3.3-4</td>
</tr>
<tr>
<td>France, as reported by Malgaigne: Parisian hospitals for four years</td>
<td>587</td>
<td>301</td>
<td>1 in nearly 2</td>
</tr>
<tr>
<td>Guthrie, on the field of battle</td>
<td>291</td>
<td>24</td>
<td>1 in 11.1-2</td>
</tr>
<tr>
<td>Guthrie, secondary in hospitals</td>
<td>551</td>
<td>265</td>
<td>1 in 2.1-2</td>
</tr>
<tr>
<td>Glasgow Infirmary, Dr. Lawrie</td>
<td>276</td>
<td>101</td>
<td>1 in 2.7-10</td>
</tr>
<tr>
<td>Pennsylvania and Massachusetts hospitals</td>
<td>116</td>
<td>37</td>
<td>1 in 4</td>
</tr>
<tr>
<td>Northern hospital, Liverpool</td>
<td>96</td>
<td>18</td>
<td>1 in 5</td>
</tr>
<tr>
<td>Gendron, Paris</td>
<td>79</td>
<td>33</td>
<td>1 in 2.1-2</td>
</tr>
<tr>
<td>University College Hospital</td>
<td>66</td>
<td>10</td>
<td>1 in 6.1-6</td>
</tr>
<tr>
<td>Emery, after battle of Navarino</td>
<td>68</td>
<td>14</td>
<td>1 in 4.4-5</td>
</tr>
<tr>
<td>Liverpool Infirmary, three and a half years</td>
<td>56</td>
<td>4</td>
<td>1 in 14</td>
</tr>
<tr>
<td>Guyon, African army of the French, 1837-9</td>
<td>63</td>
<td>17</td>
<td>1 in 4</td>
</tr>
</tbody>
</table>

Edinburgh, last year—

Larger extremities, 18 cases, 13 dead | 38 | 15 | 1 in 2.1-2 |

Lesser extremities, 20 | 59 | 15 | 1 in 4 |

Scotch Hospitals, during last year, exclusive of Edinburgh | 60 | 14 | 1 in 4.1-3 |

Larrey and Roux | 38 | 15 | 1 in 2.1-2 |

Larrey, primary, on field of battle | 13 | 2 | 1 in 6.1-2 |

Dubois | 28 | 3 | 1 in 9 |

After revolution of 30th July, at Paris, the proportion of deaths was three in four. | 4 | 3 |

Bell states, that out of operations performed on the field of battle, he lost one in 12 | 12 | 1 |

Total | 3586 | 1146 | 1 in 3.7-10 |
Table showing the Mortality attending the Operation of Amputation.

<table>
<thead>
<tr>
<th>Operation</th>
<th>No. of Cases</th>
<th>Dead</th>
<th>Proportion</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amputation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>of the thigh</td>
<td>201</td>
<td>136</td>
<td>1 in 1 3-4</td>
<td></td>
</tr>
<tr>
<td>of leg</td>
<td>192</td>
<td>106</td>
<td>1 in 1 3-4</td>
<td></td>
</tr>
<tr>
<td>of foot</td>
<td>38</td>
<td>9</td>
<td>1 in 4 1-4</td>
<td></td>
</tr>
<tr>
<td>of shoulder joint</td>
<td>13</td>
<td>10</td>
<td>2 in 3</td>
<td></td>
</tr>
<tr>
<td>of upper arm</td>
<td>91</td>
<td>41</td>
<td>1 in 2 1-4</td>
<td></td>
</tr>
<tr>
<td>of fore-arm</td>
<td>28</td>
<td>8</td>
<td>1 in 3 3-4</td>
<td></td>
</tr>
<tr>
<td>of wrist and hand</td>
<td>24</td>
<td>1</td>
<td>1 in 25</td>
<td></td>
</tr>
<tr>
<td>Amputation of the thigh</td>
<td>128</td>
<td>46</td>
<td>1 in 2 3-4</td>
<td></td>
</tr>
<tr>
<td>Amputation of the leg</td>
<td>62</td>
<td>30</td>
<td>1 in 2</td>
<td></td>
</tr>
<tr>
<td>Amputation of the foot</td>
<td>5</td>
<td>1</td>
<td>1 in 2 1-2</td>
<td></td>
</tr>
<tr>
<td>Amputation of shoulder</td>
<td>6</td>
<td>4</td>
<td>1 in 1 1-2</td>
<td></td>
</tr>
<tr>
<td>Amputation of arm</td>
<td>53</td>
<td>21</td>
<td>1 in 2 1-2</td>
<td></td>
</tr>
<tr>
<td>Amputation of fore-arm</td>
<td>20</td>
<td>0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Amputation of upper extremities, collected from various sources (French military) | 123 | 66 | 1 in 2 3-4 |

Amputation of lower extremities | 107 | 69 | 2 in 3 |

Amputation of upper extremities (various sources) | 144 | 18 | 1 in 8 |

Amputation of lower extremities | 296 | 75 | 1 in 4 |

These are chiefly taken from the reports of Malgaigne, chiefly military surgery.

Glasgow Infirmary, from 1795 to 1840, reported by Dr. Lawrie — Medical Gazette, 1841.

Total cases collected by Phillips from the works of Boyce, Lancici, Scarpa, Pelletan, &c., where old operation was performed:

<table>
<thead>
<tr>
<th>Artery subjected to Ligature, &c.</th>
<th>No. of Cases</th>
<th>Deaths</th>
<th>Proportion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Femoral tied</td>
<td>22</td>
<td>6</td>
<td>1 in 3 3-4</td>
</tr>
<tr>
<td>Humeral tied</td>
<td>7</td>
<td>1</td>
<td>1 in 7</td>
</tr>
<tr>
<td>Hunterian operation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ligature of arteria innominata</td>
<td>6</td>
<td>6</td>
<td>all die.</td>
</tr>
<tr>
<td>Ligature of subclavian carotid</td>
<td>40</td>
<td>18</td>
<td>1 in 2</td>
</tr>
<tr>
<td>Abdominal aorta</td>
<td>3</td>
<td>3</td>
<td>all die.</td>
</tr>
<tr>
<td>Common iliac</td>
<td>8</td>
<td>3</td>
<td>1 in 2 2-3</td>
</tr>
<tr>
<td>Internal iliac</td>
<td>4</td>
<td>2</td>
<td>1 in 2</td>
</tr>
<tr>
<td>External iliac</td>
<td>27</td>
<td>9</td>
<td>1 in 3</td>
</tr>
<tr>
<td>Femoral</td>
<td>42</td>
<td>7</td>
<td>1 in 6</td>
</tr>
</tbody>
</table>

Total | 199 | 66 | 1 in 3 |

* The only successful case, if so it may be called, is related by Mr. Porter, of Dublin, where the artery was cut down upon and found too much diseased to bear the ligature; the wound closed readily, and the aneurism was cured.
Some discrepancies exist in the calculations of various authors as regards the mortality of this operation. Phillips states that out of 171 cases he has collected, 57 died. Listranc states that he has collected the reports of 180 cases where the Hunterian operation has been performed, and gives the deaths at 40 only.

The above table is drawn out after carefully examining all the medical periodicals for a long series of years, and the author believes it may be relied on as being the closest possible approximation to the actual truth.

Table shewing the Mortality attending the Operation for Lithotomy.

<table>
<thead>
<tr>
<th>Nature of operation, where recorded, by whom or where performed</th>
<th>No. of Cases</th>
<th>Deaths</th>
<th>Proportion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frere Jacques (recorded by various authors)</td>
<td>124</td>
<td>7</td>
<td>1 in 17 3-7</td>
</tr>
<tr>
<td>Raw (the only official register extant that I can find noticed)</td>
<td>22</td>
<td>4</td>
<td>1 in 5 1-2</td>
</tr>
<tr>
<td>Cheselden</td>
<td>213</td>
<td>20</td>
<td>1 in 10 1-3</td>
</tr>
<tr>
<td>Naples: lateral operation—cases operated on in the public hospitals, from 1821 to 1838</td>
<td>643</td>
<td>100</td>
<td>1 in 6 1-2</td>
</tr>
<tr>
<td>Dupuytren—bilateral operation</td>
<td>99</td>
<td>19</td>
<td>1 in 6</td>
</tr>
<tr>
<td>Dupuytren's account of the practice of the Parisian hospitals and private cases, 1836</td>
<td>336</td>
<td>61</td>
<td>1 in 6</td>
</tr>
<tr>
<td>Dudley, Kentucky</td>
<td>153</td>
<td>4</td>
<td>1 in 38 1-4</td>
</tr>
<tr>
<td>Chrichton, of Dundee</td>
<td>71</td>
<td>8</td>
<td>1 in 9</td>
</tr>
<tr>
<td>Norwich hospital for the last 60 years</td>
<td>704</td>
<td>93</td>
<td>1 in 7 3-5</td>
</tr>
<tr>
<td>Leeds Infirmary, from 1767 to 1817, according to Dr. Priot</td>
<td>197</td>
<td>28</td>
<td>1 in 7</td>
</tr>
<tr>
<td>Bristol Infirmary</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bransby Cooper</td>
<td>104</td>
<td>10</td>
<td>1 in 10</td>
</tr>
<tr>
<td>Liston</td>
<td>22</td>
<td>2</td>
<td>1 in 11</td>
</tr>
<tr>
<td>Hotel Dieu and La Charité, Paris</td>
<td>1200</td>
<td>225</td>
<td>1 in 5 1-2</td>
</tr>
<tr>
<td>Luneville</td>
<td>1639</td>
<td>147</td>
<td>1 in 11</td>
</tr>
<tr>
<td>Frere Côme</td>
<td>100</td>
<td>19</td>
<td>1 in 5</td>
</tr>
<tr>
<td>Pajola</td>
<td>50</td>
<td>5</td>
<td>1 in 10</td>
</tr>
<tr>
<td>Pauza</td>
<td>70</td>
<td>5</td>
<td>1 in 14</td>
</tr>
<tr>
<td>Ourrard</td>
<td>60</td>
<td>5</td>
<td>1 in 12</td>
</tr>
<tr>
<td>Jocul</td>
<td>83</td>
<td>3</td>
<td>1 in 17</td>
</tr>
<tr>
<td>Total</td>
<td>5900</td>
<td>765</td>
<td>1 in 7 3-4</td>
</tr>
</tbody>
</table>

Table shewing the Mortality attending upon the Operation of Gastrotomy and the Cæsarian Section.

<table>
<thead>
<tr>
<th>Where or by whom recorded, nature of operation, &c.</th>
<th>No. of Cases</th>
<th>Deaths</th>
<th>Proportion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cæsarian section. Dr. Churchill:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>414 cases, 166 died, = 1 in 2 1-2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cases collected by Mons. Figuera: 790 cases, 424 fatal, = 1 in 13-4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cases well authenticated, collected by Dr. Churchill, all occurring since A. D. 1750*</td>
<td>321</td>
<td>172</td>
<td>1 in nearly 2</td>
</tr>
<tr>
<td>Removal of Dropical Ovarium, where operation was completed</td>
<td>33</td>
<td>11</td>
<td>1 in 3</td>
</tr>
<tr>
<td>Operation for extirpation, where either no tumour existed, or wherein surmountable obstacles prevented the removal of the diseased mass</td>
<td>9</td>
<td>3</td>
<td>1 in about 2</td>
</tr>
<tr>
<td>Total</td>
<td>363</td>
<td>186</td>
<td></td>
</tr>
</tbody>
</table>

* Out of twenty-eight persons who had the operation performed on them more
Table shewing the Mortality attending the Operation for Hernia.

<table>
<thead>
<tr>
<th>Where or by whom recorded, &c.</th>
<th>No. of Cases</th>
<th>Deaths</th>
<th>Proportion.</th>
</tr>
</thead>
<tbody>
<tr>
<td>In Sir A. Cooper's work on Hernia</td>
<td>77</td>
<td>36</td>
<td>1 in 2</td>
</tr>
<tr>
<td>By Travers</td>
<td>14</td>
<td>8</td>
<td>1 in 1 1-2</td>
</tr>
<tr>
<td>Dewar, of Dunfermline</td>
<td>17</td>
<td>4</td>
<td>1 in 4</td>
</tr>
<tr>
<td>Scarpa, (on Hernia)</td>
<td>16</td>
<td>5</td>
<td>1 in 3</td>
</tr>
<tr>
<td>Lawrence (on Hernia)</td>
<td>22</td>
<td>7</td>
<td>1 in 3</td>
</tr>
<tr>
<td>Clement</td>
<td>8</td>
<td>3</td>
<td>1 in 2 2-3</td>
</tr>
<tr>
<td>Hey (he performed the operation forty times, but no detailed account is given of all the cases)</td>
<td>12</td>
<td>6</td>
<td>1 in 2</td>
</tr>
<tr>
<td>Wurtzburg, from 1816 to 1842</td>
<td>56</td>
<td>24</td>
<td>1 in 2 1-2</td>
</tr>
<tr>
<td>Recorded in different periodicals as isolated cases, &c.</td>
<td>88</td>
<td>30</td>
<td>1 in 3</td>
</tr>
<tr>
<td>Malgaigne, Hospitals of France:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Patients between fifty and eighty years of age</td>
<td>97</td>
<td>70</td>
<td>1 in 1 1-4</td>
</tr>
<tr>
<td>Other ages</td>
<td>86</td>
<td>44</td>
<td>1 in 2</td>
</tr>
<tr>
<td>Guy’s Hospital, from Sept. 1841, to Dec. 1842</td>
<td>19</td>
<td>10</td>
<td>1 in 2</td>
</tr>
<tr>
<td>Scotch Hospitals during 1843</td>
<td>11</td>
<td>3</td>
<td>1 in 3 2-3</td>
</tr>
<tr>
<td>Cases witnessed by the author</td>
<td>6</td>
<td>3</td>
<td>1 in 2</td>
</tr>
<tr>
<td>Liverpool Infirmary, for two years</td>
<td>4</td>
<td>1</td>
<td>1 in 4</td>
</tr>
<tr>
<td>Liverpool Northern Hospital—nine years</td>
<td>12</td>
<td>6</td>
<td>1 in 2</td>
</tr>
<tr>
<td>Total</td>
<td>545</td>
<td>260</td>
<td>1 in 7 3-4</td>
</tr>
</tbody>
</table>

[Many writers on Midwifery recommend that in the operation of turning, both feet should, if possible, be grasped and pulled down. We entirely agree with Professor Simpson in the following very judicious remarks.]

In most cases I hold this method to be improper and unjustifiable, because it is almost always more difficult to seize both extremities than to seize one; because one is quite sufficient for our purpose, and more safe for the life of the mother; and because by pulling at one extremity (when pulling does happen to be required after the version is accomplished) we more perfectly imitate the natural oblique position and passage of the breech of the infant, that when we drag it down more directly and more upon the same plane, by grasping and dragging at both limbs equally. The infant also assuredly incurs less risk of impaction of the head, and above all, less chance of fatal compression of the umbilical cord, when the os uteri and maternal canals have been dilated by the previous passage of the breech, increased in size by one of the lower extremities being doubled up on the abdomen, than when both extremities being seized and ex-

than once, only three died—i. e., there were seventy-three operations on twenty-eight persons, and only three deaths.—[From Dr. Churchill's Midwifery, &c.
tended, these same passages are more imperfectly opened up by the lesser-sized wedge of the breech alone. Notwithstanding, however, the great difficulties and consequently the greater dangers attendant on the operation, when we search for, and grasp both lower extremities, instead of one, it is still so dogmatically laid down as a rule by most obstetric authorities, that many practitioners seem to deem it a duty, not to attempt to turn the child without having previously secured both feet.

In few or no cases of turning is it proper or requisite to bring down both extremities, unless in the complication of turning under rupture of the uterus. In that case, but in that only, ought we to follow at once this procedure—and here we follow it because, if we left the other extremity loose in the uterus or abdomen it would be apt to increase the lesion in the walls of the organ, if it happened to get involved in the aperture, or impacted against its edges. In some very rare instances in which, after version by one leg has been effected and immediate delivery is necessary, the cervix and os internum occasionally contract so forcibly and strongly upon the protruded limb, whenever we drag upon it, as not to allow a sufficient amount of traction being applied to this extremity without fear of lacerating its structures. In such cases it may be well to attempt to pass the hand to secure the other extremity, for then by pulling at both extremities together, we incur less chance of injuring them than if we applied the same required amount of force to either of them singly.

Should we seize one extremity only?—From what I have already stated, you know my opinion as to this being the proper method of proceeding in almost all cases of difficult turning. The method was long ago spoken of by Portal; and within the present century, Hoffman and Jeorg in Germany, and my friend, Dr. Radford, in this country, have severally written on the subject, and upheld, that, in no case of turning ought we to lay hold of more than one extremity, for the purpose of effecting the version of the infant. I have just pointed out what I conceive to be two—perhaps the only two—exceptional conditions to this general rule.

I believe the seizure of the knee to be preferable, in most, if not in all cases, to the seizure of the foot, or, rather, as it should be more correctly stated, to the seizure of the ankle of the child. I speak, you will recollect, of turning in cases of shoulder or arm presentation, in which the liquor amnii has been for some time evacuated, as in Anderson's case, and the uterus by its tonic contraction has clasped itself around the body and head of the child. Under such circumstances, it is an object of importance not to be obliged to introduce our hand farther than is absolutely necessary, into the cavity of the uterus, because the contraction of the organ, in many cases, opposes its introduction, and the forced introduction of it is apt to produce laceration. It is an object also of equal moment to attempt to turn by a part which produces as little change as possible in the figure and form of the infant; because, if we thrust any of the
angulated parts of the child against the interior of the contracted uterus, we should also thus be still more liable to produce rupture of that organ. Now, holding these points in view, it appears to me, that the turning of the child, by seizure of the knee, presents several decided advantages over turning of the child by seizure of the foot. For, 1st. The knee is more easily reached. As we slip our hand along the anterior surface of the protruding arm, and along the anterior surface of the thorax of the child, we always, if the attitude of the child has not been altered by improper attempts at version, or very irregular uterine action, find the knees near the region of the umbilicus of the infant—the lower extremities, as you are aware, being folded up in utero so that the knees are brought up to that part, and the legs flexed upon the thighs in such a manner that the heels and feet lie nearly in apposition with the breech of the child. To seize a foot, therefore, we should require to pass our hand about three inches (or, in fact, the whole length of the leg) further than we require to do in order to seize a knee. 2nd. The knee affords the hand of the operator a much better hold than the foot. By inserting one or two fingers into the ham or the flexure of the knee, we have a kind of hooked hold which is not liable to betray us. Every one, on the other hand, who has turned by the foot or feet, knows how very apt the fingers are to slip during the required traction, and how much in this way the difficulties of the operation are sometimes increased. 3d. We produce, I believe, the necessary version of the body of the child more easily by our purchase upon the knee—because thus we act more directly on the pelvic extremity of the infant's spine, than when we have hold of a foot. 4th. Turning by the foot appears to me to endanger greatly more the laceration of the uterus than turning by the knee. The reason of this is sufficiently evident. When we turn by the foot, we have to flex the leg round upon the thigh, and thus, at one stage of the operation, and during one part of the flexion of the leg, we are obliged to have the leg bent to a right angle with the thigh, and the foot of the infant thus projected and crushed against the interior of the uterus. You see this when, on the infant before me, I seize hold of the foot and turn it round from its position at the breech, till I bring it up to the shoulder, the part which we are supposing to present at the os uteri. You can easily thus perceive that, when the angled and long leg of the child is thus brought round, it must rasp and scratch (if I may so speak) along the interior of the contracted uterus, and endanger, to a fearful degree, the laceration of the organ. It is needless to say how much all this danger is increased, when, after having brought down one foot, we pass again our hand, and attempt to bring down a second foot (as is recommended by some authors), for thus we only double the danger of the laceration of the uterus, from the forced and obstructed passage along its interior, of this other extremity.

One point remains for our consideration. Granting that it is proper to seize a knee, I think it matter of the very first moment to know
which knee should be seized. On this point you will find no directions in any of our modern obstetric works, British or foreign, as far as I know them; and yet I believe the secret of turning with facility and safety in such a case as Anderson's—with the waters evacuated and the uterus contracted—depends upon the knowledge of which of the two lower extremities of the infant should be seized. If we turn with one of the extremities—and whether the foot or the knee—it should be the foot or knee of the limb on the opposite side of the body to that which is presenting. Thus, if the right shoulder or arm presents, we should take hold of the left knee or foot; and if the left arm or shoulder presents we should take hold of the right knee or foot. I repeat, that I believe this point to be of the most essential importance; and the reasons for the rule are simple. In bringing down the foetus in the operation of turning, we may, and should produce two kinds of alteration in its position and figure. Thus, we may bend or flex the body forward upon the transverse axis of the trunk; and we may rotate or turn the body round upon the longitudinal axis of the trunk. If we merely flex it, the operation of version will be one of difficulty; if we both flex and rotate the trunk at the same time, the operation will be one of comparative facility. By merely flexing the body upon its transverse axis, we are liable to bring down one of the lower extremities, while we do not displace the upper extremity, which is primarily presenting at the os uteri. If we both rotate and flex the body—that is, turn it both on its transverse and longitudinal axis—at the same moment, while we bring down the pelvic extremity of the child, the turning of the body of the infant carries away from the os uteri the part originally presenting.

Many of you must be acquainted with the fact, that obstetric authors have proposed various methods of removing away from the cervix uteri the presenting arm or shoulder, in order to allow of more space for the part which is brought down, and to produce the necessary evolution of the child. Thus some recommend the presenting part to be pushed up before we seize the feet; others advise the foot to be seized with the one hand, and the presenting part to be pushed up with the other; and others again counsel us to bring down one or both feet, secure them with a tape (as you see in the plate of Moreau), and, whilst pulling with this tape, to introduce the hand, after the lower extremities are brought down, for the purpose of pushing up the presenting portion of the upper extremity. All these rules and complications are at once avoided by following the principle that I have just stated to you, of bringing down, whenever it is possible, the knee opposite that of the presenting arm or shoulder. When we do this, by carrying the knee diagonally across, if I may so speak, the abdomen of the child to the os uteri, we both, as I have said, flex and rotate at the same time the trunk of the infant, and in doing so, the semi-rotation of the trunk inevitably carries up the presenting arm, in proportion as the knee which is laid hold of is pulled.
Division of the Spinal Marrow.

1845.

Division of but and 593

the

in

corresponding

jumped

knees

of

produce
ges

is

of

the

is

the

produce

ges

1845.

N.

Middleport,

believed

points

general,

knees

or

into

the

equally

powerless.

to

partly

I

have

advantages

taking

hold

of

the

highest

juxta-

position,

and

lying

upon

the

abdomen

of

the

infant,

near

the

umbilicus.

If,

therefore,

in

passing

your

hand

into

the

uterus,

you

insinuate

it

as

you

ought

to

do,

along

the

anterior

surface

of

the

thorax

and

abdomen

of

the

child,

you

come

in

contact

with

both

knees

at

the

same

time.

And

the

rule

which

I

would

give

you

is,

that

instead

of

hooking

your

finger,

or

fingers

into

the

flexure

of

the

lower

or

nearer

knee,

you

hook

them

instead

into

the

flexure

of

the

upper,

more

distant,

or

opposite

one.

Both

are

so

far,

in

general,

equally

near,

or

equally

distant,

and

you

seize

the

one

or

the

other

according

as

you

take

care

to

turn

your

finger

so

as
to

hook

it

into

the

flexure

of

the

lower

or

the

flexure

of

the

upper.

PART III.—MONTHLY PERISCOPE.

Case of Division of the Spinal Marrow. By Eli Hurd, M. D., of Middleport, Niagara County, New York. (Communicated for the N. Y. Journ. of Medicine, by Jas. Webster, M. D., of Rochester.)—

The following remarkable case of injury of the spinal marrow is believed to be without precedent, or at least to present sufficient points of interest to warrant its publication:

On the 24th of April, 1829, J. S. Spalding, of Hartland, N. Y., jumped from the top of a lumber wagon box on to a stick of timber lying upon the ground; and as his feet struck the timber, the surface being wet, they slipped instantly from under him, and he fell upon his back and left side. When he came to a rest, he found himself partly under the wagon, and between the wheels, the wagon and timber being parallel to each other. From this position he endeavored to extricate himself, but found his lower extremities benumbed and powerless. He then called out for assistance, saying that he had broken his back on the edge of the timber in his fall. He was immediately extricated from his perilous situation, and informed by his
assistants that there was a chisel sticking in his back. This chisel, when he jumped from the wagon, was in his coat-pocket. An attempt was promptly made to extract the instrument, which resulted in pulling off the handle only.

I was then called, and in a few moments was on the spot, where I found my patient in the arms of three or four men, his back exposed, and an iron tool, which proved to be a part of the shank of a chisel, projecting from the skin. This I seized with a pair of blacksmith's pincers, such as are used for pulling off horse-shoes, and bracing myself, endeavored to extract it, instead of which I pulled him out of the hands of those who had hold of him. We then braced ourselves once more, and after a prolonged and severe effort, succeeded in drawing out a chisel, five inches in length to the shoulder, seven-eighths of an inch wide, and from a quarter of an inch at the shoulder tapering to less than one-eighth of an inch in thickness at the cutting extremity.

The wound was then dressed, and the patient carefully conveyed home. At the time of extracting the instrument, he says that he saw "vivid flashes of light, which were apparently followed by total darkness." During the operation he was conscious of very little pain.

The wound made by the chisel was opposite the spinous process of the lower dorsal vertebra, on the left side. At its superior extremity it was half an inch from the spinous process, and one inch at its inferior extremity; so that a line drawn parallel to the spinous process of the vertebrae, and three-fourths of an inch to the left, would have intersected it in the middle. The direction of the instrument was upwards, at an angle from the surface of twenty to twenty-five degrees, and to the right of about twelve degrees, penetrating the spinal column, and undoubtedly entirely dividing the cord. Perfect insensibility of the skin below the wound, with paralysis of the lower extremities, bladder and rectum, was the immediate consequence. The shock that the system received produced great prostration for some forty hours, when reaction took place, and was followed by fever for ten or twelve days. The external wound cicatrizd in a few days, scarcely discharging a spoonful of pus. The urine was drawn off by means of the catheter for six days after the accident, when the bladder began to resume its functions, and two days after the instrument was discontinued. Cathartics failing to move the bowels during the same period of time, and for two or three days longer, dejections were procured by stimulating enemata. Returning sensibility occurred in the skin the fifth day, and an imperfect use of the limbs about the fifteenth.

My attendance was twice and thrice daily for the first six days, once daily for the next eleven, then occasionally until the twenty-first after the accident (May 15), when the patient was dismissed from my charge. He first commenced locomotion on his hands and knees, then by pushing a chair round, and afterwards by means
of crutches, which he has been obliged to use ever since. Distortion of the feet and ankles commenced some weeks after his efforts to get about on crutches, and increased for several years thereafter; yet his general health continued good.

The treatment during the state of prostration was by diffusible stimulants, through the febrile stage by antiphlogistics; while friction, with stimulating liniments to the paralyzed parts, was used throughout both stages, and for months afterwards.

[The following additional particulars, written subsequently and recently communicated, complete the history of this remarkable case.]

Sensibility of the skin and action in the inferior extremities returned very slowly; so much so, that four years and seven months after the accident above-mentioned, carelessly sitting or kneeling with his left knee nearer than usual to the hot fire, without feeling any pain, or being conscious of suffering, the skin and integuments over the knee-pan and on either side of it were so badly burned, that mortification and sloughing took place. This was so deep, that the cavity of the joint was opened and exposed to view. The patella was covered only by the periosteum, and after a few days, as he was endeavoring to draw his leg up in bed, broke transversely across. The superior portion of the patella protruded so much from the wound in consequence of the retraction of the extensor muscles, that, after various unsuccessful attempts to reduce and keep it in place, it was removed by amputation. The knee was now much inflamed and swollen. The wound gaped horribly, and every symptom gave indication of a fatal issue. A fungus vegetation sprang up from every side of the wound, filled up the cavity, and formed a spongy protuberant mass above and around it. Hemorrhage followed every application of caustic that was made to check its exuberant growth, as well as compression, even the slightest touch. The miserable patient became extremely exhausted, and amputation of the diseased and crippled limb seemed the only alternative, and even that a doubtful one.

At this juncture, December 23, 1833, which was more than three weeks from the time of the burn, and the seventh of my attendance, I commenced dressing the wound with "Singleton's Golden Ointment," according to the analysis of Mr. Thomas Clark, of Glasgow, Scotland.* This soon arrested the morbid action, reduced the size of the fungoid mass, and gave it a healthy appearance. Convalescence slowly followed. January 22, 1834, I introduced a seton in the sound parts above the wound, and on February 4th the patient was dismissed cured. He has since remained well. No ankylosis of the joint at the time occurred, nor has since taken place. On the contrary, he has complained of its being rather too flexible.

A large, ugly-looking puckered cicatrix remains over and above

* See No. 12 of the Glasgow Journal, or Medico-Chirurgical Review, new series, vol. XIV.
the left portion of the joint. The inferior portion of the patella is drawn round upon the outside of the knee-joint. The leg is rotated outwards, and the heel thrown in so as to point to the hollow of the right foot. The toes are thrown out and drawn up towards the metatarsal bones, and the whole foot is drawn inwards, and flexed upon the tibia in such a manner as to make almost a right angle with the leg. There is also considerable deformity of the right foot and ankle, though less than of the left.

The general treatment was by wine, tonics and opiates. The local unimportant otherwise than above-mentioned. He was under my care, in the treatment of the limb, for thirty-three days, and slowly thereafter recovered the use of his limbs, except the previous decrepitude, which has considerably increased since.

Such is a brief account of this extraordinary case; embracing and detailing, however, all the important and material facts that transpired both with regard to disease and treatment, from the time of its first unfortunate occurrence till its final termination in health.

There is no curvature of the spine, nor has there been at any time. Nor is there any complaint whatever of the back. He can get into and out of a carriage, mount a horse from the ground without assistance, and ride off at any pace. He has been elected constable and collector of the town where he resides for a number of successive years, discharged the duties of his office acceptably to the public, and attends to many other kinds of business. He has married within two years, and has one child. In fact, he is, in every sense of the word, as well as he ever was, except his crippled condition.

[We regard the above case as unique, as far as our knowledge extends, and the facts are abundantly corroborated. That the spinal marrow was completely divided, and afterwards united, there seems to be no doubt whatever. Perhaps it may be deemed not more remarkable than the union of nerves after division for tic douloureux, a fact well authenticated, as the spinal cord may be considered no more than a bundle of nerves contained within a common sheath. Cases also are recorded where incised wounds of the brain have united, and the patient recovered; but, so far as we are informed, this is the first instance on record of a total division of the spinal cord.—Ed. N. Y. Jour. Med.]

Conclusions regarding Tubercles.—1. Tubercle is a secreted substance, deposited under the form of yellowish opaque grains. It grows by superposition. 2. There are two species of tubercles, the simple and the multiple; the latter forms by the aggregation of several simple tubercles. It contains organized parts within. 3. Granulations are a form of chronic pneumonia: they do not pass into tubercles. 4. The softening of a tubercle depends on the action of the surrounding living parts. 5. Simple tubercle never softens from the centre to the circumference. 6. The multiple tubercle often softens from the centre to the circumference. 7. The most
frequent seat of tubercle is the cellular tissue. Tubercle is sometimes to be seen in the lymphatic vessels. Tubercle does not occur on the free surface of mucous membrane so long as it is entire. S. Tubercles are often hereditary. 9. The lymphatic and sanguineo-nervous temperaments are predisposed to tubercles. 10. Infants and females are most subject to tubercular diseases. 11. Inflammation is an exciting cause of tubercles. 12. The same is to be said of passive congestions, of over-activity or deficient activity of an organ, and probably also of the alterations of the fluids. 13. No certain sign of the rise of tubercles is known. 14. The hectic fever which occurs in tubercular diseases results from the act of elimination. 15. To prevent the tendency to tubercles, we must counteract the influence of hereditary disposition, of temperament, of age, of sex. 16. In persons with predisposition to tubercles, inflammations should be guarded against with the greatest care, or arrested as promptly as possible. 17. The same rules apply to passive congestions. 18. The absorption of tubercles is very probable. 19. To obtain the cure of tuberculous ulcerations we must prevent the formation of new tubercles, and confine the work of elimination within certain limits. 20. Tubercles may remain long in the organs in a latent state; to obtain this result we must seek to arrest the process of elimination by antiphlogistic means, and above all by revulsives.—From M. Lombard.—(Northern Jour. of Med.) Braithwaite.

VARIOUS OPINIONS RESPECTING HOOPING-COUGH.

Dr. Waller has tried belladonna in two cases of hooping-cough, with the best results. He gave the extract in a twelfth of a grain dose, three times a-day, to a child four years of age. In his cases there was no indication of the presence of inflammation, but simply the spasmodic cough. Prussic acid and conium had failed in affording any permanent or marked relief.

Mr. Crisp views the disease generally as inflammatory, or at least congestive, and usually finds the antiphlogistic plan the best treatment in the early stages. He has proved prussic acid of service only for a day or two.

Dr. Willshire has treated simple uncomplicated hooping-cough with two or three ipecacuanha emetics, one every alternate morning, followed for two or three days with nauseating doses of antimony, and has found this plan of great service in the early stages. Conium and ipecacuanha were afterwards useful. He is afraid to employ belladonna, as some have found that it has a tendency to increase vascular action in the brain, and to produce hydrocephalus.

Dr. Chowne lays particular stress on the necessity of keeping the patient in a warm temperature, and using every means to prevent his catching cold. Nauseating doses of ipecacuanha were frequently of benefit. He does not believe that emphysema could be produced by hooping-cough.
Dr. Clutterbuck looks upon hooping-cough as a specific disease, produced by a specific cause—an inflammation of the bronchial membrane of a specific character, apt to induce inflammation of other organs, as of the lungs or head, and these complications constitute the character of hooping cough. He has little confidence in any remedy for this affection. The disease should be narrowly watched, with the view of prevention rather than of active treatment; if mild, it would terminate spontaneously; if it threatened the complications alluded to, decided antiphlogistic means were demanded.

Dr. Golding Bird regards hooping-cough in the first stage, as invariably inflammation of the lining membrane of the bronchial tubes, larynx and trachea, of a specific character, and implicating in some peculiar manner, the par vagum. This inflammation lasted a definite period, which was influenced by constitution, and other causes. In the second stage of the affection, the disease was nervous, the specific irritation of the par vagum being kept up, altogether independent of inflammation; or if this were present, it was accidental; the hooping was afterwards protracted, by the influence of habit. In the first stage, the remedies for bronchitis were advisable—such as emetics, diaphoretics, the warm-bath, and a warm temperature. When the inflammatory stage was passed, the object of the practitioner was to subdue irritation in the par vagum, and this was effected by the agency of narcotics—such as conium, in conjunction with the carbonate of potash, hemlock, and hydrocyanic acid. Embrocations to the spine and chest were also useful. When bronchorrhœa became troublesome, small doses of alum, with sedatives, were employed with advantage. When the bronchorrhœa had ceased, tonics were indicated—the kind of tonic to be determined by the constitution of the patient. Emphysema does not, in his opinion, occur as the consequence of hooping-cough.

Dr. T. Thompson has found, in some cases, where belladonna was given, that the poisonous, rather than the curative effects of that remedy developed themselves, even though the doses administered were remarkably small. With reference to the irritation of the par vagum in hooping-cough, he relates a case in which this nerve had become exposed, from the formation of an abscess, or other cause; and it was remarkable, that when the nerve was in contact with air, a spasmodic action resembling hooping-cough was produced; when the nerve was covered over by a cicatrix, the hooping-cough ceased.

Physiological Effects of Conium Maculatum or Hemlock.—In the July No. of the American Journal of the Medical Sciences, is an Article entitled "Experiments to determine the Physiological effects of Conium Maculatum, by Pliny Earle, M. D." Dr. E. is well and favorably known to the profession and community, as Physician to
the Bloomingdale Asylum for the Insane, located near New-York city; and he has contributed largely to the pages of the valuable quarterly just mentioned. In the Article before us, he says:

"The conium maculatum, in the form of extract or inspissated juice, is somewhat extensively used in general practice; and, being considered, as it unquestionably is, a narcotic, is not unfrequently prescribed as a soporific. Having for several years been accustomed to the free use of this preparation in the treatment of insanity, without ever procuring sleep as its effect, even in doses gradually raised to sixty, eighty and ninety grains, three times in the day,—and having not long since heard an eminent physician, who prescribes for his patients 'nearly a hundred dollars worth' annually, express a doubt that this extract has 'any medicinal virtues whatever,' I determined to ascertain, by self experience, the nature of its immediate effects upon the human system."

Having obtained a good preparation, he commenced his experiments by taking on the 1st January last, 1 gr. doses three times a day. These were gradually increased every day, until he took the enormous dose of 60 grs.; three times daily. Indeed, of the English preparation, he ventured to take 80, 90, and even 100 grs. at a dose—i. e., in the course of some twelve or fifteen hours, he swallowed 270 grs. of Cicuta.

The effects were negative until he reached 25 grs. taken fasting, when he "felt a disagreeable sensation, 'like the fulness of the head,' occasioned by a ligature around the neck; accompanied by a very slight vertigo." The two subsequent doses on this day (the 15th) were unattended by these effects. 30 grs. the next day produced symptoms similar to those of yesterday; 40, 45, 50 and 60 gr. doses gave rise to sensations of fulness of the head, vertigo, dimness of sight, dilated pupils, double vision, weariness and weakness in the limbs, particularly in the knees; heat in the gastric region, &c. In ten minutes after taking a dose of 60 grs., warmth in the stomach was perceived; in 15 minutes the cerebral symptoms commenced, and in about half an hour the action of the medicine had reached its maximum. In less than two hours, the apparent effects had entirely disappeared. Throughout the experiments, the sleep seems to have been natural, appetite good, and the pulse regular, perhaps a little slower, but stronger and fuller. The effects, as might be expected, were greater when the medicine was taken fasting.
Anti-gastralgic Pills.—(Journal des Connaisances.) M. De Larue asserts that, for the last six years persons laboring under true gastralgia, have generally found prompt relief from the use of pills made according to the following formula:

- Extract of Opium, 30 cent. (1½ gr.)
- Sub-Sesqui-Carbonate of Iron, 60 "
- Magnesia, 120 "
- Gum Syrup, q. s.

Make 24 or 48 pills, according to age, individual susceptibility, &c. Give one two hours before breakfast, and another three hours after the last repast in the evening. They should be administered alone, or associated with other auxiliary remedies, and taken with or without interruption, according to circumstances.

They accomplish a cure most commonly in a month or six weeks.

Treatment of Chronic Dropsy. By Dr. Kerner.—Journal des Connaisances.—The inhabitants of Weinsberg, no doubt in honor to the name of their locality, are great drinkers, and are therefore very frequently hydropic. When their anasarca does not depend upon any organic visceral or vascular lesion, Dr. Kerner effects a prompt cure by prescribing a decoction of

- Digitalis Purpurea, 2 gram. (40 gr.)
- Root of the Ononis spinosa, 4 "
- Senega root, 6 "

The whole acidulated with the citrate of potassa. This diuretic formula causes a rapid disappearance of the serous swelling of the abdomen and feet.

Treatment of Nervous Cephalalgia.—Many different preparations have been proposed to combat simple nervous head-ache; and all practitioners have had numerous occasions to regret the failure of these different means. M. Scheneider, one of the most distinguished physicians of Germany, recommends the administration, either in the form of pill or potion, the alcoholic Extract of Aconite (aconitum napellus) in doses of ¼ to 1 gr.—(Gaz. des Hôpitaux. Bulletin Gén. de Thérapeutique.)

Employment of Cochineal in the treatment of Hooping Cough.—During an epidemic of hooping cough which prevailed with measles last winter in Berlin, Dr. Beunewitz says he had frequent occasions
to satisfy himself of the therapeutic efficacy of cochineal in the first of these diseases. Not only did the attack sensibly diminish in force and frequency, but complete restoration was often effected in at least fifteen days. After previously giving an emetic, Dr. B. prescribes the medicine as follows:

R. Cochineal, 4 grammes (about 4 gr.)
Salt of Tartar, 8 gram.
Boiling water 45 gram.
Simple Syrup, 30 gram.

Mix. Give this in forty-eight hours. The author says he did not succeed by this preparation in the treatment of the cough complicated with the measles.—(Casper's Hochenschrift, et Journal de Med., 1843. Bulletin Gén. de Thérapeutique.)

Treatment in Cases of Burn.—Dr. Wm. Jones, of Lutterworth, has sent to us for publication, the following fact:—About twenty-five years since I was called to a young lady who was dreadfully burnt on the thighs and abdomen. It appeared to us a hopeless case. It immediately struck me that the administration of a very strong opiate afforded the only shadow of a chance for the patient. That, therefore, I immediately gave her. A tranquil sleep resulted. When its effects went off I repeated it, and I was quite surprised not only to see how little she suffered, but how kindly the burnt parts cicatrized and healed. I have always used it with great advantage.—Lancet.

This treatment has been successful in the hands of others.—Edts.

On Amputation of the Penis. By Robert Barnes, M. D.—M. Ricord's proceeding is this:—having performed the amputation, with the precaution of preserving sufficient skin, and no more, to sheath the corpora cavernosa, and secured the vessels, the surgeon seizes with the forceps the mucous membrane of the urethra, and with a pair of scissors makes four slight incisions, so as to form four equal flaps; then using a fine needle, carrying a silk ligature, he unites each flap to the skin by a suture. The wound unites by the first intention; adhesion being formed between the skin and mucous membrane, which become continuous, a condition analogous to what is observed at the other natural outlets of the body. The cicatrix then contracting, instead of operating prejudicially, as in the old methods, tends, on the contrary, constantly to open the urethra, whilst a perfect covering is provided for the ends of the corpora cavernosa. In the spring of 1843, I had the satisfaction of seeing this ingenious operation performed by M. Ricord, at the Hôpital du Midi; when I saw the patient, eight days afterwards, the sutures had been removed,
union had taken place between the skin and mucous membrane, and the urine had freely passed without the intervention of a catheter. I saw this patient again when he was about to leave the hospital, at which time the cicatrix was complete, the orifice of the urethra patent; there was an excellent stump, and, in short, the operation appeared to be perfectly successful. M. Ricord has performed the operation in other cases, and, he reports, with the same happy results. I have performed the operation many times on the subject, and have found no difficulty in the execution of it.

Another inconvenience mentioned by Mr. Hancock, the difficulty of directing the stream of urine, is one which becomes troublesome in proportion to the shortness of the stump. It may be obviated by the contrivance recommended by Ambrose Paré. The patient must provide himself with a funnel-shaped canula, made of box, ivory, or metal, the base of which, being applied over the stump, and resting on the pubes, the other end will serve to carry the urine clear of the person.—London Lancet.

Excision of the Urethra performed successfully in a woman.
By Prof. Riberi.—Archives Générales.

In this case there was a cancerous tumour developed in the walls and existing in the cavity of the urethra in a woman of 60 years of age—the tumour projected towards the vagina, whose orifice it diminished; it caused almost continual pains and great difficulty in urination.

M. Riberi made an antero-posterior incision on each side of the urethra, in the vagina; then he dissected on each side of it so as to leave the tumour adherent only by the neck of the bladder. Having reached this point of the operation, he cut circularly in front of the neck of the bladder, and thus removed the tumour. Finally, a sound was introduced into the bladder, through the very small portion of the urethra which remained, and the hæmorrhage was arrested by a tampon. The patient was cured, and what is important, without incontinence of urine.

The author believes that this operation is unique in the science, and gives a more advantageous process in case it should again become necessary. This process consists in placing the sound in the bladder, before the excision is made, and in slitting the urethra upon that instrument, in order to be enabled to remove the tumour with greater facility.

Treatment of Ulcers on the Cornea by occlusion of the eye.—M. H. Larrey, Professor at the Val-de-Grace Hospital, speaks high-
ly of a mode of treatment he has adopted for ulcers on the cornea. He places on the eye a little wad of cotton maintained by adhesive strips and a bandage. At the end of ten or twelve days, the conjunctivitis which accompanied the ulcer is found to have disappeared, and the latter has cicatrized or been very much reduced in size.

(Gazette des Hopitaux. Bulletin Gén. de Thérapeutique.)

To apply Camphor to a Blister.—This is often recommended to prevent strangury. To obviate the difficulty in powdering the camphor sufficiently fine, we see in the 28th vol. of the Bulletin Général de Thérapeutique, M. Veï proposes a saturated solution of this article in ether. Spreading this on an oily or greasy rag, the camphor is deposited by evaporation.

Test for Bile, by M. Pattenkoffer (Lancet, Oct., 1844).—Add to the fluid supposed to contain bile, concentrated sulphuric acid until it becomes hot, and then drop into it a solution of sugar; the presence of the bile is manifested by the mixture becoming of a deep pink, or red color, varying in intensity.

Secale Cornutum, its therapeutic action—by M. Payan. Gazette Médicale de Paris, June, 1845.—Since Dr. Olivier-Prescot introduced secale cornutum into therapeutics, numerous researches have been made upon it. For a long time it was regarded only as an excitant of uterine contractility, and even this specific property has been sometimes denied. At the present time it seems to be admitted that the secale cornutum acts not only upon the uterus, but also upon the rectum, the bladder and the inferior extremities, whenever these parts are in an asthenic condition. Its therapeutic effect being thus complex, we are compelled to refer its action to some organ which has the power of acting at once upon all these parts. According to M. Payan, the spinal marrow is the organ primarily affected by the action of the secale cornutum, and this opinion of the direct influence of this article upon the spinal marrow is supported by very ingenious reasoning, and what is better, by very interesting cases. These cases place beyond doubt the efficacy of this medicine in incomplete paralysis of the bladder, rectum and inferior extremities; and in all these cases, according to the author, the excitation is transmitted by means of the nerves which have their origin in the medulla spinalis or of the plexuses which emanate from it.
Treatment of Amenorrhæa.—Dr. Chaumet, of Bordeaux, prescribes the following enmanagogue pill, which many times has produced the happiest effects:

r. Ext of Gentian, . . . gr. V.
 Aloes, \{ \
 Calomel, \} . . . àâ gr. 1 \{ Mix.

Take a pill thus made morning and evening. To aid the purgative effect of these pills, apply mustard and hot water to the feet, and dry cupping to the hypogastrium, and internal parts of the thighs.—(Bulletin de l'Acad. de Méd. Bulletin Gén. de Thérapeutique.)

Return of Suicides in France, during the year 1843.—According to the official returns made for 1843, there were 3,020 suicides in France that year. The Department of the Seine, of which Paris is the capital, furnished 551, or nearly a fifth of the whole number. Submersion or drowning was the mode generally resorted to—1098 individuals had recourse to this means—954 to strangulation or hanging—450 to fire arms—206 to asphyxia by charcoal. A fourth of the suicides did not possess the intellectual faculties entire. Among the number were 729 females, nearly a fourth—15 were under sixteen years old, 20 octogenarians, 170 septuaginarians, and 384 sexagenarians.—(Bulletin Général de Thérapeutique.)

MEDICAL INTELLIGENCE.

New Medical Journals.—We have received the first four numbers of the Missouri Medical and Surgical Journal, a new periodical, which is published in St. Louis, under the editorial management of R. T. Stephens, M. D. These numbers give evidence of a degree of enterprise and professional ability highly creditable to our brethren in the far West. The Journal is published in monthly numbers, each containing 24 pages. Price two dollars per annum.

We have also received the four numbers of The Buffalo Medical Journal, a monthly periodical of 24 pages, published in Buffalo, N. Y., and edited by Austin Flint, M. D. The original department contains a number of useful articles, and affords proof that there is in that section "sufficient material to commence an enterprise of this kind." Although, from the location of Buffalo, this Journal will come into close competition with some of the older, and established medical periodicals, the field is large enough for many laborers, and we doubt not the ability of the physicians of Western New-York, to perform their part, in the cultivation of the Medical Sciences—and establish a Journal of high character.
Our valued cotemporary, the New Orleans Medical Journal, comes to us with a new name—The Louisiana Medical and Surgical Journal, and with the addition of Profs. Harrison and Carpenter to the Editorial department. These changes have resulted from a union of the New Orleans Medical Journal, with a projected work, under the direction of the Professors just named. We doubt not that this union will prove highly advantageous, as it will enlist the whole profession in that section in its support. The ability with which this Journal has been heretofore conducted, and the valuable accession to its Editorial department, which it has just received, will most certainly secure for it an extensive patronage. We most cordially wish it success. The work is published every other month, in numbers containing 144 octavo pages,—at five dollars per annum, payable in advance.

Necrology.—The death of M. Breschet, one of the Professors in the Faculty of Medicine at Paris, &c., &c., is announced in the French Journals as having taken place on the 11th of last May. He was one of the most industrious and honorable of the Surgeons in the French Capital.

The fortune left by the late Dr. Abercrombie of Edinburg, was $50,000 to each of his seven daughters, besides a considerable sum to the free Church of Scotland, of which he was an Elder. His family presented his library, consisting of 10,000 volumes, to the Royal College of Surgeons of Edinburg.

An Instrument designed for the permanent cure of Hernia, Hydrocele, Goitre, Encysted Tumors, and to deposit medicines in the tissues of the body.—From the favorable opinion expressed by a few friends in regard to the Instrument, a cut of which may be seen on the opposite page, I am induced to offer it with a few remarks to the profession.

It is known that for the past eight or ten years, considerable attention has been bestowed on the subject of hernia. That the interest is not yet exhausted, and the matter still sub judice, may be seen by the following question proposed for the Boylston medical prize for 1847—"Is there any safe and certain operation for accomplishing the cure of common reducible inguinal hernia?"

The recent investigations upon this subject have resulted, I believe, in the pretty general adoption of some modification of the Truss, first proposed by Stagner, (Chase's or Landis's for instance,) and the rejection of any operation for the permanent cure of hernia. The dread of peritoneal inflammation, the occasional success of the Truss, and the affection being considered simply an inconvenience, have induced great caution in the adoption of an operation not absolutely required. While a properly adapted apparatus is the correct treatment for rupture in children, and sometimes relieves the adult, still we can with no certainty promise a cure by it in the latter. To effect this we must resort to other means.

That even reducible hernia is something more than an inconvenience to patients, and that the Truss is but a palliative treatment, the many suggestions made, and operations proposed within the few past years, sufficiently attest. Some of these are, (Belmas,) by bladders of gold-beater's skin, sticks of gelatin, &c., deposited in the sac; (Gerdy,) by invaginating the skin and stitching it
A NEW INSTRUMENT—THE UNION OF THE SYRINGE WITH THE TROCAR.

1. Gold cannula pierced with the stilet, which is as pointed as a needle.
2. Thumb-screw to fasten the stilet, and close the orifice in the piston when the stilet is drawn out.
3. Nob to remove the stilet.

[This cut represents half the size of the Instrument made for me by Mr. Murphy, Jeweller of this city.]
about the neck of the hernial sac; (Guerin and Velpeau,) by subcutaneous incisions and scarifications of the neck of the sac; (Bonnet,) with pins and rolls of linen; (Jameson,) by incision and intrusion of a piece of integument into the ring and retaining it by sutures; (Stith,) incision and insertion into the sac of a piece of kid or buck skin softened in mucilage; (Pancoast,) by trocar and injected fluid. Of these means, that by injection, from the uniform success experienced by it in hydrocele, would seem to merit most favor—the objection to the operation being the want of a suitable instrument, for Prof. Pancoast used a trocar, canula and syringe.

Having been recently consulted by a physician, who had been under the professional care of Professors Dudley and Geddings, and who was ready, as he stated, to submit to any operation, I had concluded to propose to him incision of the sac. A few days after this, Dr. Wozencraft, of Nashville, Tenn., called, and exhibited a small syringe, invented and patented for the cure of hernia, by a Dr. Jaynes, formerly of Virginia, but now of Missouri. This instrument is simply the upper part of a common silver pencil case, having a piston adapted to one end, and the other terminated in a gold pointed canula. An eye or opening near the point, allows the fluid to be injected into the sac after the hernia is reduced. Dr. W. prefers oil of cloves, from three to six drops is the quantity generally introduced, and he says that though hundreds of cases have been operated upon by the inventor and his agents, still no unpleasant consequences have followed. The operation requires repetition in some instances, and he also acknowledges that the spermatic cord has been punctured. His case operated on here, is doing well, and promises success; and so is the one upon which I have operated.

As a substitute for the patented Instrument, the one represented by the cut is suggested, and it may have some advantages over it.

1st. Not being patented, it may be used by every physician.

2d. The point being moveable, there will be no danger of wounding other parts, in ascertaining when the canula is in the hernial sac.

3d. The Syringe being of glass, the action of the piston upon fluids, either in injecting or withdrawing them, can be seen.

4th. It may be employed as an exploring needle, to ascertain the contents of tumors, &c.

5th. The canula opens at the extremity and not at the side of the instrument.

6th. In its application to various affections. In hydrocele, for example, a puncture having failed to cure the patient, as soon as a re-accumulation commences, half-a-drachm of tinct. iodine may be injected. I believe the very last suggestion for this affection, was to pencil the tunica vaginals through the canula of a trocar with this article.

Operation with the Instrument.—Fill the syringe with the injecting fluid, by withdrawing the piston. Project the point of the steel stilet beyond the gold canula, and fix it by the thumb-screw in the handle, or ring of the piston. Place the patient in the horizontal position, reduce the hernia for instance, then with the fore-finger of the left hand invaginate the skin of the scrotum and spermatic cord into the abdominal canal. The instrument held as a writing pen, in the right hand, is introduced from above downwards upon the tip of the left fore-finger. The stilet is now withdrawn, the canula ascertained to be in
the sac, and the piston pushed home into the syringe. A Truss ought previously to be well fitted to the internal ring. The patient should be confined for a day or two, and the Truss unremittingly worn for a month. The fluid I should select is diluted tinct. iodine, and the quantity, which of course must vary, about 3ss.

The new principle, indeed it be novel, is simply the union of the syringe and trocar in the above described instrument.

Since the above was devised, Dr. A. L. Hammond of this city, one of our recent graduates, has suggested the addition of a spiral spring to the stilet, by which after the introduction of the canula, it is withdrawn, and the piston at once pushed down in the syringe.

Paul F. Eve.

METEOROLOGICAL OBSERVATIONS, for August, 1845, at Augusta, Ga.
Latitude 33° 27' north—Longitude 4° 33' west Wash. Altitude above tide
152 feet.

<table>
<thead>
<tr>
<th>THERMOMETER.</th>
<th>BAROMETER.</th>
<th>WIND.</th>
<th>REMARKS.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sunrise.</td>
<td>4 p.m.</td>
<td>Sunrise.</td>
<td>4 p.m.</td>
</tr>
<tr>
<td>1845</td>
<td>1845</td>
<td>1845</td>
<td>1845</td>
</tr>
<tr>
<td>1</td>
<td>64</td>
<td>90</td>
<td>29 74-100</td>
</tr>
<tr>
<td>2</td>
<td>73</td>
<td>82</td>
<td>" 88-100 " 87-100</td>
</tr>
<tr>
<td>3</td>
<td>65</td>
<td>74</td>
<td>" 85-100 " 86-100</td>
</tr>
<tr>
<td>4</td>
<td>64</td>
<td>75</td>
<td>" 85-100 " 85-100</td>
</tr>
<tr>
<td>5</td>
<td>65</td>
<td>72</td>
<td>" 79-100 " 79-100</td>
</tr>
<tr>
<td>6</td>
<td>65</td>
<td>84</td>
<td>" 79-100 " 79-100</td>
</tr>
<tr>
<td>7</td>
<td>64</td>
<td>90</td>
<td>" 80-100 " 80-100</td>
</tr>
<tr>
<td>8</td>
<td>69</td>
<td>90</td>
<td>" 82-100 " 82-100</td>
</tr>
<tr>
<td>9</td>
<td>70</td>
<td>89</td>
<td>" 82-100 " 82-100</td>
</tr>
<tr>
<td>10</td>
<td>73</td>
<td>92</td>
<td>" 82-100 " 75-100</td>
</tr>
<tr>
<td>11</td>
<td>72</td>
<td>78</td>
<td>" 70-100 " 62-100</td>
</tr>
<tr>
<td>12</td>
<td>70</td>
<td>93</td>
<td>" 64-100 " 68-100</td>
</tr>
<tr>
<td>13</td>
<td>70</td>
<td>90</td>
<td>" 78-100 " 74-100</td>
</tr>
<tr>
<td>14</td>
<td>71</td>
<td>92</td>
<td>" 80-100 " 76-100</td>
</tr>
<tr>
<td>15</td>
<td>72</td>
<td>95</td>
<td>" 76-100 " 76-100</td>
</tr>
<tr>
<td>16</td>
<td>73</td>
<td>96</td>
<td>" 76-100 " 76-100</td>
</tr>
<tr>
<td>17</td>
<td>73</td>
<td>85</td>
<td>" 76-100 " 76-100</td>
</tr>
<tr>
<td>18</td>
<td>72</td>
<td>92</td>
<td>" 74-100 " 68-100</td>
</tr>
<tr>
<td>19</td>
<td>73</td>
<td>94</td>
<td>" 77-100 " 67-100</td>
</tr>
<tr>
<td>20</td>
<td>72</td>
<td>90</td>
<td>" 68-100 " 66-100</td>
</tr>
<tr>
<td>21</td>
<td>70</td>
<td>86</td>
<td>" 66-100 " 62-100</td>
</tr>
<tr>
<td>22</td>
<td>68</td>
<td>90</td>
<td>" 66-100 " 67-100</td>
</tr>
<tr>
<td>23</td>
<td>70</td>
<td>78</td>
<td>" 78-100 " -100</td>
</tr>
<tr>
<td>24</td>
<td>70</td>
<td>90</td>
<td>" 81-100 " 78-100</td>
</tr>
<tr>
<td>25</td>
<td>72</td>
<td>88</td>
<td>" 81-100 " 75-100</td>
</tr>
<tr>
<td>26</td>
<td>70</td>
<td>83</td>
<td>" 83-100 " 75-100</td>
</tr>
<tr>
<td>27</td>
<td>70</td>
<td>85</td>
<td>" 73-100 " 73-100</td>
</tr>
<tr>
<td>28</td>
<td>70</td>
<td>85</td>
<td>" 79-100 " 73-100</td>
</tr>
<tr>
<td>29</td>
<td>70</td>
<td>76</td>
<td>" 81-100 " 80-100</td>
</tr>
<tr>
<td>30</td>
<td>70</td>
<td>80</td>
<td>" 80-100 " 74-100</td>
</tr>
<tr>
<td>31</td>
<td>70</td>
<td>88</td>
<td>" 75-100 " 75-100</td>
</tr>
</tbody>
</table>

12 Fair days. Quantity of Rain, 3 inches and 4½-10.

ERRATA.—Notwithstanding all our care, several errors, we regret, have been detected in the 1st Article of this No. On page 550, 14th line from top, read equable for agreeable. On page 551, 8th " " bottom, read annual for annual. On page 552, 3rd " " bottom, read 1834 for 1814. On page 553, 16th " " top, read cases for causes. On page 554, 4th and 5th lines, put period after the word diet—change semi-colon to comma, after the word aid, and efface the word and before rarely. On page 567, read procumbens for punctatum. We are responsible for the translation of the Greek and German of this Article.