Figure S1. **Roles of caveolae and dynamin in *E. coli* invasion.** (A) Caveolae are portals for the *E. coli* invasion into BECs. The cholesterol sequesterer methyl-β-cyclodextrin (MβCD) dose-dependently (1 and 2 µM) decreased the *E. coli* ORN103(pSH2) invasion of BECs, whereas subsequent readdition of cholesterol restored the bacterial invasion. Data are expressed relative to cells not treated with MβCD or cholesterol. n = 3; *, P < 0.01 versus MβCD control. (B) Forced overexpression of wild-type or K44A dynamin2 does not affect the binding of UPEC to BECs. *E. coli* ORN103(pSH2) binding to BECs was assessed at 4°C, and no significant difference was seen in wild-type (WT) or K44A dynamin2-overexpressing cells compared with control empty vector (EV)-transfected BECs. Data are expressed relative to empty vector cells. n = 3. (C) Dynamin2 does not impact the invasion of *S. typhimurium*. Overexpression of wild-type or K44A dynamin2 does not affect the entry of an invasive strain of *S. typhimurium* into BECs. Data are expressed relative to control empty vector-expressing cells. n = 5. (D) Stable dynamin2 knockdown in BECs. Cells were infected with lentivirus encoding control shRNA that targets GFP (GFPshRNA) or shRNAs that target dynamin2 (Dyn2shRNA-6649, Dyn2shRNA-6650, or Dyn2shRNA-6651). Equal amounts of cell lysate on nitrocellulose filters were immunoblotted with dynamin2 (top) and GAPDH (bottom) antibodies. Data represent means ± SEM.
Figure S2. Incubation of BECs with bacteria promotes NO formation. (A) BECs were incubated with *E. coli* ORN103(pSH2) for the indicated times. NOSs convert l-arginine to l-citrulline in a reaction that forms NO as a byproduct and can be experimentally measured by assessing the formation of [3H]-citrulline from [3H]-arginine. BECs were incubated with [3H]-arginine alone or together with *E. coli* ORN103(pSH2). Cells were lysed at the indicated times, and equal amounts of protein were added to a column to separate [3H]-citrulline. The flow-through fraction was analyzed by liquid scintillation. (B) Real-time detection of NO in live BECs. Representative images of a time-dependent (in minutes) conversion of the NO-reactive probe DAF-2DA (not fluorescent) to DAF-2T (fluorescent). Images were acquired after cells were loaded with DAF-2DA (in minutes) and are representative of results obtained from three independent experiments. Numbers at the top reflect the duration of treatment (in minutes). NT, not treated.

Figure S3. Knockdown of dynamin2 and eNOS attenuates UPEC invasion. (A) shRNA-mediated reduction of dynamin2 and eNOS protein expression in BECs. (B and C) Bacterial adherence (B) and bacterial invasion (C) after exposure of BECs expressing GFPshRNA, Dyn2shRNA, eNOSshRNA, or Dyn2/eNOSshRNA to CFT073, UT189, or UT189ΔFimH. For CFT073, data are shown relative to GFPshRNA-expressing cells. For UT189 and UT189ΔFimH, data are shown relative to GFPshRNA-expressing cells that were incubated with UT189. n = 3; *, P < 0.05 versus values from corresponding GFPshRNA-transfected samples. FimH, UT189ΔFimH. Data represent means ± SEM.
Figure S4. Dynamin2 S-nitrosylation is required for UPEC entry into BECs. (A) Acid wash is efficient to remove membrane-bound UPEC. BECs were starved, prechilled on ice, and infected with HcRed-expressing E. coli on ice for 15 min. The cells were divided into three groups. For group 1 (a–d), cells were fixed immediately after infection. For group 2 (e–h), cells were washed with PBS, incubated in culture medium for 1 h (to allow bacterial invasion), washed with acid solution, and fixed. For group 3 (i–l), cells were sequentially washed with PBS and acid solution, incubated in culture medium for 1 h, and then fixed. Higher magnification of the insets in c, g, and k are shown in d, h, and l. Actin was stained with Alexa Fluor 488 phalloidin. (B) BECs were transiently transfected with cDNAs encoding GFP-dynamin2 (wild-type [WT], K44A, C86A, C607A, or C86/607A) and subjected to invasion assay with HcRed-expressing E. coli. Cells were washed with acid solution, fixed, and processed for immunofluorescence. For each transfectant, 100 GFP-expressing cells were randomly selected, and the number of internalized HcRed-expressing E. coli was counted. Data are expressed relative to control GFP-expressing cells. n = 3; *, P < 0.05 versus control values. Data represent means ± SEM.
Figure S5. UPEC invasion leads to dynamin2 enrichment on the plasma membrane. (A) Intracellular distribution of HA-dynamin2. BECs were transfected with HA-dynamin2 and processed for immunofluorescence using anti-HA antibody. (A, a) Overexpressed HA-dynamin2 was observed in punctated structures and on the plasma membrane. (A, b–d) BECs were transfected with HA-dynamin2, infected with HcRed-expressing *E. coli*, fixed, and then processed for immunofluorescence imaging after staining with anti-HA antibody. The representative images show enrichment of HA-dynamin2 at sites of bacterial entry and attachment (d, arrows). (B) BECs overexpressing HA-dynamin2 (wild-type [WT] or C86/607 mutated form) were infected or not infected with *E. coli*. Plasma membranes were isolated by differential centrifugation, and proteins were resolved by SDS-PAGE followed by Western blotting with anti-HA antibody. Actin was used as a loading control.