Hdl Handle:
http://hdl.handle.net/10675.2/58
Title:
LIM and SH3 protein-1 modulates CXCR2-mediated cell migration.
Authors:
Raman, Dayanidhi; Sai, Jiqing; Neel, Nicole F; Chew, Catherine S; Richmond, Ann
Abstract:
BACKGROUND: The chemokine receptor CXCR2 plays a pivotal role in migration of neutrophils, macrophages and endothelial cells, modulating several biological responses such as angiogenesis, wound healing and acute inflammation. CXCR2 is also involved in pathogenesis of chronic inflammation, sepsis and atherosclerosis. The ability of CXCR2 to associate with a variety of proteins dynamically is responsible for its effects on directed cell migration or chemotaxis. The dynamic network of such CXCR2 binding proteins is termed as "CXCR2 chemosynapse". Proteomic analysis of proteins that co-immunoprecipitated with CXCR2 in neutrophil-like dHL-60 cells revealed a novel protein, LIM and SH3 protein 1 (LASP-1), binds CXCR2 under both basal and ligand activated conditions. LASP-1 is an actin binding cytoskeletal protein, involved in the cell migration. METHODOLOGY/PRINCIPAL FINDINGS: We demonstrate that CXCR2 and LASP-1 co-immunoprecipitate and co-localize at the leading edge of migrating cells. The LIM domain of LASP-1 directly binds to the carboxy-terminal domain (CTD) of CXCR2. Moreover, LASP-1 also directly binds the CTD of CXCR1, CXCR3 and CXCR4. Using a site-directed and deletion mutagenesis approach, Iso323-Leu324 of the conserved LKIL motif on CXCR2-CTD was identified as the binding site for LASP-1. Interruption of the interaction between CXCR2-CTD and LIM domain of LASP-1 by dominant negative and knock down approaches inhibited CXCR2-mediated chemotaxis. Analysis for the mechanism for inhibition of CXCR2-mediated chemotaxis indicated that LASP-1/CXCR2 interaction is essential for cell motility and focal adhesion turnover involving activation of Src, paxillin, PAK1, p130CAS and ERK1/2. CONCLUSIONS/SIGNIFICANCE: We demonstrate here for the first time that LASP-1 is a key component of the "CXCR2 chemosynapse" and LASP-1 interaction with CXCR2 is critical for CXCR2-mediated chemotaxis. Furthermore, LASP-1 also directly binds the CTD of CXCR1, CXCR3 and CXCR4, suggesting that LASP-1 is a general mediator of CXC chemokine mediated chemotaxis. Thus, LASP-1 may serve as a new link coordinating the flow of information between chemokine receptors and nascent focal adhesions, especially at the leading edge. Thus the association between the chemokine receptors and LASP-1 suggests to the presence of a CXC chemokine receptor-LASP-1 pro-migratory module in cells governing the cell migration.
Citation:
PLoS One. 2010 Apr 19; 5(4):e10050
Issue Date:
26-Apr-2010
URI:
http://hdl.handle.net/10675.2/58
DOI:
10.1371/journal.pone.0010050
PubMed ID:
20419088
PubMed Central ID:
PMC2856662
Type:
Journal Article; Research Support, N.I.H., Extramural; Research Support, Non-U.S. Gov't; Research Support, U.S. Gov't, Non-P.H.S.
ISSN:
1932-6203
Appears in Collections:
Institute of Molecular Medicine and Genetics: Faculty Research and Presentations

Full metadata record

DC FieldValue Language
dc.contributor.authorRaman, Dayanidhien_US
dc.contributor.authorSai, Jiqingen_US
dc.contributor.authorNeel, Nicole Fen_US
dc.contributor.authorChew, Catherine Sen_US
dc.contributor.authorRichmond, Annen_US
dc.date.accessioned2010-09-24T21:26:49Z-
dc.date.available2010-09-24T21:26:49Z-
dc.date.issued2010-04-26en_US
dc.identifier.citationPLoS One. 2010 Apr 19; 5(4):e10050en_US
dc.identifier.issn1932-6203en_US
dc.identifier.pmid20419088en_US
dc.identifier.doi10.1371/journal.pone.0010050en_US
dc.identifier.urihttp://hdl.handle.net/10675.2/58-
dc.description.abstractBACKGROUND: The chemokine receptor CXCR2 plays a pivotal role in migration of neutrophils, macrophages and endothelial cells, modulating several biological responses such as angiogenesis, wound healing and acute inflammation. CXCR2 is also involved in pathogenesis of chronic inflammation, sepsis and atherosclerosis. The ability of CXCR2 to associate with a variety of proteins dynamically is responsible for its effects on directed cell migration or chemotaxis. The dynamic network of such CXCR2 binding proteins is termed as "CXCR2 chemosynapse". Proteomic analysis of proteins that co-immunoprecipitated with CXCR2 in neutrophil-like dHL-60 cells revealed a novel protein, LIM and SH3 protein 1 (LASP-1), binds CXCR2 under both basal and ligand activated conditions. LASP-1 is an actin binding cytoskeletal protein, involved in the cell migration. METHODOLOGY/PRINCIPAL FINDINGS: We demonstrate that CXCR2 and LASP-1 co-immunoprecipitate and co-localize at the leading edge of migrating cells. The LIM domain of LASP-1 directly binds to the carboxy-terminal domain (CTD) of CXCR2. Moreover, LASP-1 also directly binds the CTD of CXCR1, CXCR3 and CXCR4. Using a site-directed and deletion mutagenesis approach, Iso323-Leu324 of the conserved LKIL motif on CXCR2-CTD was identified as the binding site for LASP-1. Interruption of the interaction between CXCR2-CTD and LIM domain of LASP-1 by dominant negative and knock down approaches inhibited CXCR2-mediated chemotaxis. Analysis for the mechanism for inhibition of CXCR2-mediated chemotaxis indicated that LASP-1/CXCR2 interaction is essential for cell motility and focal adhesion turnover involving activation of Src, paxillin, PAK1, p130CAS and ERK1/2. CONCLUSIONS/SIGNIFICANCE: We demonstrate here for the first time that LASP-1 is a key component of the "CXCR2 chemosynapse" and LASP-1 interaction with CXCR2 is critical for CXCR2-mediated chemotaxis. Furthermore, LASP-1 also directly binds the CTD of CXCR1, CXCR3 and CXCR4, suggesting that LASP-1 is a general mediator of CXC chemokine mediated chemotaxis. Thus, LASP-1 may serve as a new link coordinating the flow of information between chemokine receptors and nascent focal adhesions, especially at the leading edge. Thus the association between the chemokine receptors and LASP-1 suggests to the presence of a CXC chemokine receptor-LASP-1 pro-migratory module in cells governing the cell migration.en_US
dc.rightsThe PMC Open Access Subset is a relatively small part of the total collection of articles in PMC. Articles in the PMC Open Access Subset are still protected by copyright, but are made available under a Creative Commons or similar license that generally allows more liberal redistribution and reuse than a traditional copyrighted work. Please refer to the license statement in each article for specific terms of use. The license terms are not identical for all articles in this subset.en_US
dc.titleLIM and SH3 protein-1 modulates CXCR2-mediated cell migration.en_US
dc.typeJournal Articleen_US
dc.typeResearch Support, N.I.H., Extramuralen_US
dc.typeResearch Support, Non-U.S. Gov'ten_US
dc.typeResearch Support, U.S. Gov't, Non-P.H.S.en_US
dc.identifier.pmcidPMC2856662en_US
dc.contributor.corporatenameInstitute of Molecular Medicine and Geneticsen_US

Related articles on PubMed

All Items in Scholarly Commons are protected by copyright, with all rights reserved, unless otherwise indicated.