SOUTHERN

MEDICAL AND SURGICAL

JOURNAL.

EDITED BY

L. A. DUGAS, M. D.,
PROFESSOR OF SURGERY IN THE MEDICAL COLLEGE OF GEORGIA.

W. H. DOUGHTY, M. D.,
PROFESSOR OF MATERIA MEDICA IN THE MEDICAL COLLEGE OF GEORGIA.

DeSAUSSURE FORD, M. D.,
PROFESSOR OF ANATOMY IN THE MEDICAL COLLEGE OF GEORGIA.

"JE PRENDS LE BIEN OU JE LE TROUVE."

Whole Series, Vol. XXI.

AUGUSTA, GA.:
E. H. PUGHE, PRINTER AND PUBLISHER.
1867.
ORIGINAL COMMUNICATIONS.

"The Medical Statistics of the Confederate States Military Hospitals. By Wm. H. Doughty, M.D., Augusta, Ga., Professor of Materia Medica in the Medical College of Georgia.

The October number of this journal contains an interesting and instructive article from Professor Jones upon the "Relations of Pneumonia and Malarial Fevers," which incorporated also a "table illustrating the rate of mortality in pneumonia under different modes of treatment, prepared from the hospital and field reports of the Confederate army of America, and also from the published statistics of various European hospitals and armies."

The destruction of the voluminous records of the Medical department at the fall of Richmond has devolved upon individual officers the duty of publishing such portions as may yet remain in their possession, in order to supply the loss as far as possible. In the table adverted to above, Professor Jones has given to the profession a mass of statistics, the value of which will be
duly appreciated by generalizers and statisticians at large. The particular use which he has made of them we cannot altogether approve, since so much of the compilation as embraces the Confederate reports can not possibly reflect the "rate of mortality under different modes of treatment." The modes of treatment are not given (as in the case of the civil hospitals), simply because it could not be done.

One would infer, from reading this article, that surgeons in charge of hospitals had it in their power to "test the value of the different modes of treatment before the profession," when, alas! the poverty of their resources was painfully prominent. Some of the records which he cites had been completed long before he was in a position to "urge" this important measure "upon each medical officer." His tour of investigation was made long after every vestige of the unfavorable circumstances (not the mode of treatment) which determined the high mortality had disappeared, and at a time when not even gleanings of previous disadvantages could be obtained from officers then on duty. Their comparison with the longest-established, best-organized, and best-conducted hospitals of the old world, with the view of indicating the relative value of the treatment, can scarcely be considered a happy one: in the latter, the most favorable conditions for treatment under every method obtain, while in the former the most unfavorable conditions are coupled with an unselected mode of treatment.

The fact, therefore, "that the mortality from pneumonia in a large number of Confederate hospitals was greater than the mortality in this disease under the different modes of treatment in European hospitals" loses its importance, since it can not be taken as a test (as was designed) of the methods of treating the disease in the South. The results were worse than the worst there employed, because the conditions, not the manner, of treatment were so also.
We venture to assert that our medical officers, as a general rule, had no choice in the matter: in many cases they had to improvise the means of treating disease, and, disregarding for the moment mere medicines, could not so much as command suitable dietetic measures. If their facilities had equalled, we shall not presume to say those of the European hospitals, but those of their implacable enemy, who condemned as contraband of war even medicines and instruments, they would now have no reason to shun the comparison.

While mournfully admitting that their hospital records are "bad enough," indeed "no better, and even worse than the heavy mortality characteristic of the rigid antiphlogistic method with bleeding, blistering, calomel, and opium, and tartar emetic," they can yet proudly challenge the charity of the profession by an exhibition of the desperate circumstances under which they contended with disease. Destitute of the means and conditions necessary to success, their records only prove that soldiers, like others, will die in great numbers when adversely situated.

We are not attempting a criticism of this article, nor a mere defense of Confederate surgeons: simply wish to place in proper connection with the disastrous record those unfavorable conditions which had more to do in producing it than the worst system of therapeutical management possible. Surgeon Jones was too generous and courteous an officer to cast censure even inadvertently upon his colleagues-in-arms. Although familiar with their embarrassments, he will doubtless be gratified with the publication of all the conditions which determined or influenced the gross results which he has manipulated.

Having organized and had charge of one of the hospitals* which he cites for eleven months (April, 1862, to

* Floyd House Hospital, then known as General Hospital, Macon, Ga.
March, 1863), when its highest mortality occurred, we have better knowledge of the circumstances connected with its mortality, and have the pleasure of giving to the profession the first sanitary report of that institution, as evidence of the facts stated. Surely, they will agree with us in the exclamation that "under such circumstances it is not astonishing that many died—nay, it is rather more so that more had not died."

SANITARY REPORT,

Accompanying the Report for the quarter ending June 30, 1862.

Reports of this kind are expected to reflect all the circumstances that may have influenced the mortality at this post, or modified the type of its prevailing diseases. In the present instance, a brief notice of the circumstances that led to the establishment of the General hospital at Macon, Ga., should be given, since it will bring to view the first of a series of influences highly prejudicial to those who were to be benefitted by it, viz.: the improper transportation of the sick.

After the fall of Fort Pulaski (April 11th) the military authorities, apprehending an attack upon the city of which it was a defensive outpost, ordered the immediate removal of the sick at and in its vicinity to the interior. Unfortunately, this removal was attempted and executed without discrimination as to the condition of the sick or their ability to stand it; the necessity of the case outweighed the question of propriety, and all alike, the convalescent and the critically ill, were hurried off to a place of safety.

The greater part, perhaps 220, of those sent here were from Camp Davis, on the Central railroad, where they had rendezvoused about the middle of March. The remainder (60) were from the Savannah hospitals. The former, particularly, were raw and undisciplined; were chiefly from rural districts, and characteristically careless of all those important hygienic rules which, whenever and wherever violated, are sure to inflict misery and suffering. While at the camp of instruction the weather was exceedingly inclement, being both damp and chilly from the heavy rains that fell during the early spring and its changeable winds.

Rubeola, parotitis, pneumonia, etc., the scourges of our camps, soon appeared and spread rapidly among the troops, laying the foundation for those diseases commonly recognized as their sequelæ. At this juncture it was attempted to transport them to this city, a distance of 160 miles, in box cars, without a single comfort other than a scanty supply of straw. During their transit it continued raining and damp,
and after their arrival at this place they were conveyed upon open vehicles, through a drizzling mist, to a place provided for their reception.

The latter, like most provisional hospitals established in a period like the present, being intended only to meet the emergency that gave rise to them, afforded but a feeble respite from the disagreeableness of their situation for the previous 36 hours. But two days' notice had been given the city authorities in which to provide for so large a number (280), and it was found impossible to obtain clothing or hospital furniture of any kind sufficient to meet the exigency. The building was at that time occupied as a low-class hotel, and was exceedingly filthy and unclean. It consists of two wings at right angles to each other, and located in the southeastern part of the city, at the intersection of two streets running northeast and southeast. It is very old and the interior much decayed in parts and is subdivided into 75 small rooms, the largest of which can only accommodate ten beds. The halls are narrow, running through the centre of each wing, with frequent interruptions by ascending and descending staircases. The second and third stories are used for hospital purposes, the stores on the first being let out to Jews and Irish of a low class.

Moreover, the exigency required the retention of the hotel bedding and other articles of furniture, and upon these the wearied sick of every disease were indiscriminately thrown; in some instances two and even three occupied the same bed. The floors were still covered with carpets that had not been removed for years; and to all this was superadded an insufficiency of nurses, food, and clothing.

At the time of our assignment to duty, 24th April, and even to the early part of May, many of the sick wore the same clothing that had been used in camp, and upon exposing their skins the accumulations were very nearly as thick as the cuticle itself. Volunteer physicians and nurses did their utmost, but what could they accomplish? Ochlesis had done and was still doing its work, and nothing but a return to the innovated laws of hygiene could save those who apparently only awaited their turn for sacrifice.

A few of the sick died shortly after reaching their quarters; frequent relapses occurred among those convalescent; and the most dangerous sequelæ of their respective diseases manifested themselves. Very soon the evil effects of crowding, want of ventilation, and uncleanliness began to be manifest in the aggravated type of disease and its fearfully increasing mortality. For several weeks the above conditions obtained, and the result was an assemblage of disease of most appalling and malignant character, as pneumonia typhoides, febris typhoides, erysipelas, and one case of phagadæna.* The mildest

*These occurred principally as secondary diseases or relapses, and therefore do not appear so fully in the return, the diagnosis of the primary disease having previously been entered.
cases were manifestly assuming a low nervous (or typhus) condition. Parotitis, usually the simplest of the diseases of childhood, was followed by acute meningitis and pneumonia typhoides, rubeola by febris typhoides, pneumonia, and bronchitis capillaris; and the few cases of febris intermittents that were then present readily assumed a typhoidal aspect. Under such circumstances, it is not astonishing that many died—nay, it is rather more so that more had not died. As an evidence of the disastrous effects of these influences, there occurred between the 13th of April—the period at which the hospital was opened—and the close of the month, nineteen deaths, three of which were from febris typhoides, seven from rubeola, the sequel of which was pneumonia, and nine from acute pneumonia. Moreover, fourteen-fifteenths (14-15) of the mortality for May occurred among the subjects thus exposed, and twelve-fifteenths (12-15) of the number by the 15th of the month (as will appear by the register of the hospital) and during the continuance of the above injurious circumstances. One of the deaths from febris typhoides was a relapse about that period.

It thus appears that thirty-four (34) of the forty-one (41) deaths reported for the quarter are ascribable in a great measure to the prejudicial circumstances surrounding the sick during and after removal from camp.

It was not until the middle of May that good nursing, well-prepared food, cleanliness, and other proper hospital accommodations were provided for the sick, since which time the type of the prevailing diseases has changed and the mortality become greatly diminished, as will appear by the mortality for June—less than half that for May—although at one time during the former there were 179 cases on hand.

Respectfully submitted.

WM. H. DOUGHTY, Surgeon in Charge.

In connection with the above report, we would beg leave to remind our readers that, under the military forms employed for the registration of diseases, neither the hospital register nor the reports of sick and wounded based upon it present a record correct and complete in every particular; the medical statistics, as contradistinguished from the surgical, are rendered incomplete, from the fact that "Form II" of the Regulations, which is the one prescribed for the register, makes no provision for the registration of secondary or supervening cases, which, under some circumstances (as under those depicted in the
above report), become very prominent in hospital experience. The form requires the entry of the *original* or *primary* "complaint," but the secondary are unprovided for, unless the surgeons feel interest enough to prompt its notation among the *incidental* facts pertaining to the case, under the general head of "remarks." This places it upon so insecure a basis as to cause its oversight in many instances, and to restrict this method of recording them to the most striking cases. The reports are mere transcripts of the register for the time embraced, and must inherit its imperfections. Our attention was drawn to this defect at an early period, and we took the liberty of suggesting an alteration in the form, in order to secure greater accuracy. Toward the close of the war a new form was adopted which served the purpose, but the value of the antecedent reports was already impaired. This is no inconsiderable circumstance. We are satisfied that many cases escape record in this way, except in the event of the death of the patient. Many, perhaps the majority of cases of pneumonia and all other affections of an intercurrent or secondary nature, that occurred at General hospital, Macon, Ga., were noted incidentally, and some probably omitted, but unless the reviewer was careful to examine the incidental remarks, there would be great danger of mistaking the actual number treated. *It is very possible, then, for the results of treatment to appear less favorable, or the proportion of deaths to appear much greater, where the primary diseases are alone made prominent.*

Since the close of the war we have been informed from the Surgeon-General's office that, in regard to secondary diseases, "it was deemed impracticable in time of war to use a form of return so complicated as would be necessary for their full registration."
The Legal Status of the Profession in Georgia.

[The following article is from a legal gentleman of this city of acknowledged ability, also a graduate of medicine, and will be read with interest by the profession.—Ed.]

It will be new to many in the profession to know that physicians who have commenced the practice of medicine in this State since the 6th of March last, and have charged fee or reward, are liable to indictment under the penal law, and, upon conviction, to be fined $500, and for the second offence to imprisonment in the common jail of the county; and farther, that all physicians not in practice on the 1st day of January, 1863, are not legally authorized to pursue their profession, at least can not enforce compensation therefor. Stranger, however, is the fact that hydropathists and homœopathists are not obnoxious to these strange and harsh provisions. These gentlemen, and all other outsiders, except followers of the "reformed practice of medicine," so called, are favored by our law to the extent of being authorized to practice and charge for the same under diploma alone.

A brief review of the history of our State legislation relative to physicians and their license to practice, will show how these absurdities have been evolved from the hands of our law-givers, and may, we trust, by drawing attention thereto, effect an organic change in the law as it now stands upon the statute-book.

The law should be, to a learned, liberal, and benevolent profession, a stay and prop: it has become a snare and pitfall.

In order to insure her people against the effects of ignorance, imposture, and empiricism—from the wiles of the quack, charlatan, and mountebank—the Legislature of our State, so early as in 1825, established a board of
physicians who were annually to assemble, to examine applicants in all the branches of medicine, and thereupon to grant or refuse licenses to practice medicine and surgery. No one (excepting such physicians and surgeons as were at that time in the practice) was allowed to prescribe or perform an operation and charge therefor without a license had been first had of this board. In order to make this provision effective, no debt, no matter what shape of bond or note the obligation had assumed, or into whose innocent hands for value such note or bond might have come, could be collected, the consideration of which was the medical services of one who had not been duly licensed. And to add a still stronger sanction, it was enacted that, should any person thereafter presume, without such license, to practice physic, surgery, or in any manner prescribe for the cure of disease for fee or reward, he should be liable to indictment, and on conviction should be fined a sum not exceeding $500 for the first offence, and for the second to be imprisoned not exceeding the term of two months. If any applicant had received a diploma from any Medical college, the board were to license without examination; but this was modified a few years later (1831) by an act which made it incumbent on the board to examine in all cases, notwithstanding the exhibition of a diploma, when a doubt arose as to the qualifications of the candidate, and by the same act it was declared unlawful for the board to license any person whatsoever who should not have produced before it satisfactory testimonials of good moral character.

The board itself was invested with all the rights and powers of a corporation—to hold property, real and personal, to keep a common seal, sue and be sued, to make by-laws for its government, and to maintain its perpetuity by filling vacancies occasioned by death, absence, resignation, or otherwise. The book in which the names of the
licentiates and the dates of granting the licenses were entered was raised to the dignity of a record, and a certified transcript from the same was declared competent as evidence in every court of justice in the State.

The whole spirit of these acts (1825–1831) and every letter of them, manifested an intention on the part of the Legislature to render this board one of the fixed and permanent institutions of the land.

Had the scheme been fully carried out, according to the design of its contrivers, it is not difficult to conceive the good it had accomplished. Not only would the citizen have been protected against the blunders of the illiterate and the vices of the sharper, but much reproach would have been arrested which has fallen on the followers of our calling. A license would have afforded presumption at least of fair acquirement and of good character on the part of its possessor.

The board of physicians, with its corporate powers and ample discretion, had hardly commenced its sessions, and entered upon the performance of its high trusts, before its action was rendered ineffectual, and barren of good results. So soon as an applicant had been refused a license for want of character or lack of attainment, he applied to the Legislature for relief, and this body never failed to pass a private act in his behalf, and to grant him those privileges which the board had, under the obligations of their office been forced to deny him. The discovery was made in a short time, that it was less expensive, as well as more convenient and certain, for the candidate to apply to the Legislature for license than to repair at some appointed time and place and stand an examination by the board. The latter cost time and money and was of doubtful issue, while the former was certain in result, required only the promise of his county member, and cost nothing but a vote.
The functions of the board become idle as the wind, and that body soon closed its sessions. The act was repealed in 1836, revived in 1839, and re-enacted in 1847, when a new board was nominated. At the same session a Botanico-Medical board was instituted by the Legislature with the same powers and duties in reference to candidates for practice in this persuasion. This fact of itself was sufficient to render nugatory any and all action of the regular board, but the same old causes continued to operate and defeat the good which was intended to be accomplished. At every session of the Legislature acts were passed with muster-rolls of names who were authorized to practice medicine and surgery, and charge for the same without farther license. As a sample of these we may instance one, in which this authority was given to "practice medicine on the Dutch and Indian plan." The board met but once or twice, if at all, and had discontinued its functions, when in 1854 an act was passed authorizing any graduate of a Medical college of the United States to practice medicine and surgery, and to charge for the same.

Thus stood the law of Georgia when the Code was adopted (1862). The Code substantially re-enacted the act of 1825, declared there was in this State a board of physicians of the allopathic school of medicine, and also a board of physicians of the reformed practice of medicine, conferred on each the like powers and duties, declared debts not collectable without a license from the one or the other, and made the practice for fee or reward without a license penal by fine and imprisonment. Thus these provisions only repeated what had been on the statute-book, but the anomaly was produced by adding what was not before known to the laws of Georgia. Section 1,348 provided: "Neither board can license persons to practice in a school different from their own. Physicians belonging
to a school of medicine not represented by a board of physicians may practice under their diplomas alone.” The Legislature of 1866 made a few alterations, such as that of the act of March 6th, which declared that the penalties for practicing without a license were not to be enforced against physicians practicing since the adoption of the Code and before the passing of that act. And the act of March 9th, which exempted from the provisions of the Code all who were in practice under legal diploma on the 1st day of January, 1863.

So that at this day the law upon our statute-book reads: If the graduate be of the regular school of medicine, he must first obtain a license before he shall attempt to gain a livelihood in the pursuit of his profession, from a board of physicians, which the law says exists, but which in fact does no such thing. He is, therefore, required to do work gratuitously, or subject himself to criminal punishment. But if the graduate be Hydropath, Homæopath, or Dutch and Indian doctor he has full authority to practice and charge by virtue of his diploma, which throws around him a mantle of protection from those penalties to which the learned, scientific, regular practitioner is made liable.

Ita lex scripta est. It seems it should only be named to be speedily abrogated.

Lieut. J. W. Harlee, Co. I, 1st Reg’t S. C. V. Infantry, Bratton’s brigade, age about twenty-seven years, and of robust constitution, was wounded in the battle of the Wilderness, May 6th, 1864. A minnie ball passed laterally through the right knee-joint, fracturing the head of the tibia. A curved incision was made, extending from one condyle to the other, reaching just below the inferior
border of the patella. All the ligaments with the synovial sac were divided, and the semi-lunar cartilages removed. A transverse section of the head of the tibia, embracing the fractured portion, was made above the articulation with the fibula. The patella was not ablated. The wound was closed with sutures and adhesive straps, and the limb secured to a long outside splint. The next day he was transported about twenty-five miles over a rough road to the rear, and two of the sutures cut out, thereby exposing the internal condyle. In a short time the exposed surface was covered with healthy granulations, and the space soon filled up. In the course of six or eight weeks true ankylosis had taken place, and the wound healed, except a small place where the condyle was exposed, leaving a small fistula, which healed in a short time afterward. This officer, who returned to his command to be retired on the invalid corps, gives the following account of the treatment carried out after being sent to the General hospital: He was furnished with a quart of good whiskey daily, and requested to drink as much as he could, and use the balance on his leg. He says he drank the quarter portion each day, and dressed his wound twice daily with one part of whiskey to three of water. His leg is about three inches shorter than the other, wears a high heel and thick sole to his boot, by which means he is enabled to walk without crutches, and even dance with ease.

Barnwell Dist., S. C., Dec. 13, 1866.

Surgical Pocket Case. By L. A. Dugas, M.D.

In the construction of pocket cases of instruments for the use of general practitioners of medicine and surgery, the makers have heretofore seemed to be governed by neither fixed principles nor definite purpose. The consequence is, that these cases differ exceedingly in the kind
and number of instruments they contain, and are rarely found to answer the purpose for which they are obviously intended.

A pocket case should contain not only such instruments as are of daily use in practice, but also such as may be needed in cases of emergency, which require immediate action. This is especially necessary with country practitioners who may be at considerable distances from home when called upon for professional services requiring the use of instruments. A pocket case should, therefore, not be a mere dressing case, but one adapted to the relief of all affections which demand prompt attention.

The instruments, moreover, should be made by the most approved patterns, in order to be useful: for there is nothing more disagreeable than to have to depend upon ill-shaped or otherwise badly-constructed instruments. They should be made light, and placed in a morocco case provided with a good clasp.

With these views, I had a case made many years ago for my own use, by Charriere, of Paris, and have endeavored to have similar ones manufactured in our country. The greatest difficulty encountered by our dealers has been in securing instruments made from good models. Few, if any, of our manufacturers seem to understand the importance of working with approved models, and the consequence is that very many of their instruments are comparatively worthless. Charriere, by devoting his life to the business, has succeeded in adapting his instruments to the wants of the surgeon more effectually than any one else; and his patterns should, therefore, be adopted in this country.

My case is constructed as follows:

1. Jointed silver caustic-bearer (porte-caustique), divided into three parts: one for nitrate of silver; one for sulphate of copper; and one containing a cataract needle,
for the removal of motes from the cornea, etc. The closed instrument is four inches long, but may be lengthened to five and a half inches by inverting the joints. This is one of Charriere's most ingenious contrivances.

2. Female silver catheter, with jointed extremity, which may be removed to give place to an adult or an infant male catheter of the same metal, also contained in the case.

3. Dissecting forceps with slide, so as to be used as artery forceps, the extremity being so rounded as to allow the ligature to slip over it and lodge upon the artery. The inner surface of the jaws serrated and grooved, to serve as a needle or pin bearer.

4. A thumb lancet.

5. Delicate dissecting forceps for extracting bodies in the nostrils and ears, eye-lashes, etc.

6. Spatula of soft iron, which may be bent for use as a curved spatula; the other end being of hard steel, terminating in a serrated point, for use as an elevator of fractured cranium.

7. Belloc's instrument, for arresting nasal hemorrhage.

8. Scissors—strong, straight, and blunt pointed.

9. Ear scoop with tumor hook at the other end, which may be made double by drawing down a slide.

10. Silver grooved director, with the handle split so as to serve for cutting the frenum linguae.

11. Two silver probes with eye; different sizes.

12. Two silver probes with grooved director; different sizes.

14. Polypus and shot forceps, as long as the case will admit; will do also for dressing wounds, removing bodies from the pharynx, etc.

15. Dupuyten's æsophageal hook and probang; with three joints, so as to be admitted into the case.
16. Large and small convex bistouris in one handle, with slides or spring backs.

17. Large and small straight bistouris in one handle, etc., etc.

18. A straight, probe-pointed bistouri of usual size, and a very small and sharp-pointed straight one, for opening whitlows, abscesses, etc., in one handle, etc., etc.

19. Gum lancet and grooved exploring needle, in one handle, etc., etc.

20. Tenaculum and artery needle for ligations, in one handle, etc., etc.

21. Six semi-lunar suture needles, and six straight ones, of assorted sizes.

22. Silver wire and saddler’s silk, for sutures.

The handles of the double instruments should be made of tortoise shell, and should be long enough for the blades at each end to work easily, with slides or spring backs.

The cost of such cases may be lessened by substituting German silver for the pure metal, and some other material for the tortoise shell. But when we consider that a good pocket case will last one’s lifetime, it will be found cheaper in the end to get the best at first.

The case which contains these instruments is, when closed, six and a half inches long and three inches wide. When open its greatest length is eight and a half inches, including the flap for clasping. It folds in the middle. With contents complete, it weighs only twelve and a half ounces. Thus constituted, the case actually contains thirty-two instruments, besides the needles, wire, etc., in such a small compass as to make it portable as a pocket companion without inconvenience.
It is a matter of surprise that the bromides of potassium and ammonium have not come into more general use in the profession.

Dr. Hammond’s little book awakened some of us to a realization of the fact that insomnia could be successfully treated without the use of opium; and further, that in many cases of wakefulness it was positively contraindicated; yet how very few think of using the bromide of potassium in this affection.

Sir Charles Locock made public, years ago, his successful use of this remedy in hysteria; yet the old and offensive drugs are to this day used nine times where the more agreeable and effectual bromides are used once.

Delirium tremens can be throttled at its very outstart by this medicine, yet how rarely does a case in private practice escape the routine of opium, alcohol, blisters, digitalis, lupulin, and capsicum. In no disease have their beneficent effects been more marked than in epilepsy.

I propose, therefore, relating the three following cases of this disease out of eight within my knowledge, treated with the bromides.

Case 1. Farmer, aged thirty, living in a miasmatic region. Enjoyed perfect health until attacked with ague; was treated with quinia, and the chills checked. Then followed convulsions, which at first resembled, as far as the pulse was concerned, apoplexy, but soon became clearly epileptic. The attacks returned at irregular intervals of from seven to ten days. He had been carefully treated with remedies such as the symptoms from time to time indicated. When he came under my care he was using tonics and alteratives, and ice-bag to the spine.
His pulse was 98, full and strong, tongue furred, bowels sluggish, disgust for food, very restless, severe headache, and marked mental confusion. I continued the ice-bag to his spine half hour daily, ordered saline purge every day, and farinaceous diet. He was very soon visited by another convulsion, which left him in a dull melancholy condition, severe headache and insomnia, but no paralysis; commenced next day with the bromide of potassium, gr. xv, three times a day; continued the saline mixture, ice-bag, and restricted diet. An improvement in all the symptoms commenced within twelve hours, and at the expiration of four weeks the patient was apparently well; there was no return or tendency to return of the convulsion. All treatment was then omitted, and at the expiration of seven weeks from the commencement of the treatment, considering himself well, he returned to the use of animal food, which was followed within ten hours by the most severe epileptic fit of any that he had had, and two days later by another. He then returned to the city and was again put upon the use of the bromide and the ice-bag. As at first, the improvement was rapid, and at the expiration of a fortnight, without my consent, omitted all treatment. He returned to the country, used promiscuous diet, and has now passed through the fever season of the locality without ague or convulsions. Says he was never in better health than at present.

Case 2. G. M—, a young man twenty-one years of age, apparently in a good physical condition, has had epileptic convulsions for the past fifteen years, and at the time of commencing his treatment (March, 1866) he was having, on an average, three attacks a day. He was ordered a saline purge twice a week, ice-bag to spine one hour daily; bromide of potassium, gr. xx, three times a day, and total abstinence from animal food. The interruption in the attacks was immediate; he continued without even
an "aura," or any other evidence of the presence of the disease, for nine consecutive weeks.

The peculiar effects of the bromide, named by Bazire bromism, having now become developed, the drug was omitted for two days, Huxham's tincture of bark, and a more liberal diet substituted. Before the end of the second day, a severe convulsion returned, and was followed by numerous aura epileptica or minor "spells." The bromide was immediately resumed, and its use continued for three weeks without a return of the disease. The increased flow of saliva, sore throat, and restlessness, again gave premonitions of the return of bromism. The dose was now reduced to gr. x, ter die. Again the lurking foe took advantage of the truce and made several sorties, which were repulsed by the bromide of ammonium, with the iodide of potassium as an ally. Another month now elapsed without an attack, but the combination last used became so offensive to him that it had to be omitted, and the bromide of potassium resumed in gr. xx doses, which is now (November) being used with results beyond the most sanguine anticipations.

Case 3. Mrs. S. B—, aged twenty-eight, the mother of two children. Insanity and epilepsy in her family. After a serious family trouble, was attacked with convulsions at intervals of a fortnight. The disease was diagnosticated hysterical epilepsy, chiefly on account of the long duration of the convulsion. The usual treatment for hysteria scarcely palliated the insomnia and almost delirium during the intervals. Having seen an account of Leckock's treatment of this disease with the bromide of potassium, I was induced to give it a trial. She commenced with gr. xx doses three times a day, and an additional dose at night if necessary to produce sleep. Within a week every vestige of the disease had vanished. The medicine was continued in reduced doses for a month,
after which it was entirely omitted. Four months have since passed without a symptom of hysteria or epilepsy, notwithstanding the continuance and actual increase of her family troubles.

I have in my possession notes of other and aggravated cases of this disease, which have been so far interrupted and modified by this treatment, that the patients have been enabled to commence life almost anew. The three just given are the forms with which we most frequently meet, and therefore cover the whole ground; namely, first, those having an apparent or known cause; secondly, congenital; and lastly, hysterical. The first and third, we have reason to believe, are cured. The second is so far palliated as to give periods of entire exemption ranging from three to four months. The modus operandi of this drug has never been satisfactorily explained. The authorities tell us that it has alterative, resolvent, and sedative effects upon the nervous system.

Looking as we do upon the convulsion as a symptom of the disease, and that the disease consists of an irritated and congested condition of the brain, medulla oblongata, or spine, then the ice-bag comes in as an important auxiliary in producing sedation—though in numerous cases the drug has performed the whole work single handed. It seems to me that the field of usefulness for this medicine is very extensive. It dispels a large proportion of the aches and pains met with in women. Neuralgia, refusing subservience to all other treatment, has yielded to this. So also with chorea, headache, and the forming stage of delirium tremens. It palliates the paroxysms of pertussis. Dr. M. A. Withers, of Pottstown, related to me a case under his care, of melancholy, culminating at times in insanity, which has been so far improved by the use of large doses of this medicine as to give strong hopes of eventual recovery.—Am. Jour. of Med. Sciences.
Use of the Thermometer in Diagnosis and Prognosis.

The number of the New York Medical Journal for November last contains some interesting remarks by Prof. Austin Flint on the thermometric phenomena of disease, a subject which has latterly engaged the attention of clinical observers in Germany and Great Britain. The following propositions contain the substance of his remarks:

1. The thermometer is indispensable for obtaining accurate information of the temperature of the body, the perceptions of patients and the sense of heat or coldness communicated to the hand of the physician being alike fallacious.

2. In the essential fevers and all acute affections, the heat of the body is more or less above the maximum of health; and the increase of heat, as a rule, persists during the career of the disease. Fevers and acute affections may, therefore, be excluded by the fact of the heat of the body remaining within the limits of health; and the existence of an essential fever or an acute affection of some kind may be predicated on a persistent increase of heat.

3. A fever is purely malarial, that is, it is not a continued fever, nor is it associated with a continued fever, if, between the exacerbations, the temperature fall nearly or quite to the range of health.

4. The diagnosis of neuropathic affections which simulate inflammations may be based on the fact of the temperature not being raised.

5. Coma from uræmia may be discriminated from the coma occurring in fevers or dependent on meningitis, by finding the temperature not raised; and in cases of uræmia, coma, and convulsions, intercurrent inflammatory affections may be excluded if the temperature remain normal.
6. In tuberculous affections, when tuberculization is going on, there is more or less increase of heat. In cases of suspected tuberculosis, a normal temperature shows either that tuberculosis does not exist, or, if existing, that it is not progressive.

7. In cases in which the history and symptoms excite fears of the existence of meningitis, the existence of this disease is not probable if the temperature be not increased; and, on the other hand, increase of temperature sustains these fears, provided the patient have not an essential fever.

8. The amount of increase of heat, as shown by the thermometer, provided the increase be not transient, is proportionate to the gravity of the disease, and is a criterion of the immediate danger. A persistent temperature of 105° always denotes great severity of disease, and a still higher increase renders it almost certain that the disease will speedily prove fatal.

9. The temperature in the different essential fevers and inflammations is governed by certain laws as regards progressive increase, daily fluctuations, and the rapidity or slowness with which it returns to the normal standard (defervescence) of the time of convalescence. Each essential fever or inflammatory affection has its own laws in respect of the points of difference just named; and any notable deviation from these laws, in individual cases, is an unfavorable prognostic. Thus, a decrease of heat below the normal range may indicate an internal hemorrhage, and a sudden increase may point to an important complication or the occurrence of an intercurrent affection. Mildness of the disease, and the absence of complications or intercurrent affections may, on the other hand, be predicated on the disease pursuing its regular course as regards temperature.

10. The surest evidence of convalescence from an es-
sentential fever, or an acute inflammation, is a return of temperature to the normal standard. If an increase of temperature persist, after apparent convalescence, or, in self-limited affections, after they have reached the end of their career, either morbid conditions pertaining to the disease continue, or some affection has been developed as a sequel to the disease.—Ibid.

Night-Blindness in the Confederate Army. By Robert J. Hicks, M.D., Williamsburg, N. C.

This is a curious and obscure disease, called, according to Lawrence, nyctalopia, as often as hemeralopia, and as, according to the same high authority, these learned terms have been the cause of great confusion, I have preferred the simple English term, because it is free from all ambiguity. While the highest authority is on the side of hemeralopia, philology would rather support the latter—nyctalopia being derived from the Greek, meaning incapacity on the part of the eye to transmit the impression of light at night. While in the army I, with others, were in the habit of calling this disease hemeralopia. Medical writers seem to differ as widely, with regard to its cause and pathology, as they do in reference to its appropriate name. And the accounts hitherto published have been so meagre and contradictory, that I thought a more extended notice might not be unacceptable to the medical profession, especially as it was a source of such very great inconvenience in our army, although not a serious affection in the great majority of cases.

For a disease so common in armies, it seems to have attracted but little attention. It is casually noticed by Baron Young, in Napoleon’s Egyptian campaign; called forth a short report in the Crimean war, and has a short notice from Lawrence, and about half a page from Littell.
It is said to occur occasionally at sea; is very rare in private practice; but prevailed in the Army of Northern Virginia so extensively as to resemble an epidemic. Soldiers attributed it to the effect of the moonlight falling upon their eyes while sleeping upon the ground. Among medical writers it is considered by one "a species of amaurosis;" by another "a species of impaired sensibility of the optic nerve," and by others a "sort of paralysis of the retina," generally concurring, however, in the belief that the disease has its seat in the nervous apparatus of the eye, and that its cause is to be found in the effect of excessive light. While differing from their opinion, I shall not discuss them; but on the contrary give the simple result of my own observations.

This disease prevailed most extensively in the Army of Northern Virginia, when encamped in the vicinity of Fredericksburg. The affection is gradual in its approach and development. The soldier, who had marched all day without inconvenience, would complain of blindness upon the approach of early twilight, and make immediate application for transportation in an ambulance. At such times he would be found blundering along just as a blind man, holding on to the arm of his companion. There was an entire absence of all constitutional symptoms, and the eyes appeared, upon inspection, perfectly natural. Sometimes both eyes were affected, but frequently only one. In the latter case little complaint was generally made.

It was not, therefore, surprising that medical officers should have been sceptical regarding the very existence of the disease, and should have frequently accused the patient of malingering. I confess I shared in this feeling until accident placed in my way what I consider a certain means of deciding the existence of the complaint. It is the use of simple candle-light in the examination of the eye, after the sun has disappeared. To such light the
pupils refuse to respond; and such was the uniform result in all my examinations. It was a curious circumstance, that the pupil should remain dilated, and the patient fail to see—that the ciliary nerves and the retina should lay aside their functions as soon as the sun disappeared, to resume them again upon his rising. Observing this fact, and justly attributing it to the more stimulating quality of sunlight, I concluded that the affection consisted in a want of tone in the nervous apparatus of the eye—a condition of enfeebled local innervation, reaching no farther than the retina, and a branch of the ophthalmic nerves. The remedy successfully used confirms this view. Cupping, leeching, blistering, mercury, and iodide potassium, were used extensively, but in my hands did harm rather than good.

Cases frequently recovered spontaneously, after all treatment had been abandoned. But a great many of them were very obstinate—yielding to nothing within the hands of medical officers, except a furlough, and this was the grand remedy, failing in no instance that came under my observation. The disease resulted from the meagre diet, the absence of vegetables and vegetable acids, and other depressing influences of a soldier's life. The proof of this is found in the fact that the removal of these influences and the substitution of those of home—its cleanliness, improved diet, and relief from mental anxiety and physical exhaustion, never failed of effecting a speedy cure. It is furthermore well known that poverty and want and filth are the fruitful sources of those affections of the eye which are most similar to this, and which are of most frequent occurrence in the degraded portions of the populations of large cities.

As before remarked, in the great majority of cases this disease is little more than an inconvenience—a simple
inability to see at night, with no other unpleasant symptoms. Littell, however, remarks that, although the prognosis is generally favorable, if not treated properly incurable amaurosis is apt to follow. Among the very large number of cases that came under my observation, there never was any such result. There was, however, of this number, amounting probably to more than a hundred, one of great interest, because it seemed that this debility of the nerves of the eye extended to the brain, and produced a fatal result. Our records were all lost at the surrender of General Lee, and I can, therefore, give the history of the case from memory only.

It was in the person of a private of the twenty-third North Carolina regiment, and occurred at Williamsport, Maryland, after a long and fatiguing march down the Valley of Virginia. When first brought to me, this soldier was found to have been suffering for several days from inability to see at night. Being examined at night by candlelight, the pupil was found dilated, and refusing to respond to the stimulus of this inferior light. On the next day he complained of considerable debility. In the course of the day, this debility had increased, and was attended with some obtuseness of intellect. The pulse became weaker, and there was a disposition to coolness of skin. When night again came on, the night-blindness was still farther aggravated. The stimulating plan of treatment being clearly indicated, was used, but failed utterly to retard the progress of the disease. On the next morning all the above symptoms of depression had become greatly aggravated, and within seven or eight hours he died without a struggle. Being interested in this disease, I watched the progress of this case with great interest, and it seemed to me to be essentially one of debility or depression. The enfeebled or atonic condi-
tion of the nerves of the eye seemed to quietly but rapidly extend to the great nervous centres, depressing them beyond the point at which vitality was possible.

It may be possible, but I think it hardly probable, that these two affections—the one of the eye and the other of the brain—should have been coincident only; for the one seemed quietly to deepen into the other, in a similar and most connected manner. There was a gradual exhaustion of all the sources of life—death steadily proceeding from circumference to centre. There was an entire absence of delirium—trismus and spasmodic action of the muscles of the back, attendant upon cerebro-spinal meningitis, under which head, no doubt, some would have reported it.

Should this complaint be met with in private practice, which, though very rare, occasionally happens, the proper plan of treatment, as deduced from the above facts, would be the use of those articles calculated to give tone to the system. Iron might be used with advantage, as protracted cases are apt to become anaemic; and as the disease is most prevalent when symptoms of scurvy manifest themselves, vegetable acids, in all probability, would be of service. These are not only great anti-scrobutics, but may be considered tonic, inasmuch as they perform a very important part in the digestion and assimilation of food. It is also highly probable that some local stimulating application, as advised by some, might be of advantage.

But to comprehend the whole plan of treatment in a few words, I would recommend, in the first place, to remove all known or supposed causes—a recommendation that applies as well to all other diseases; and in the second place, to follow that plan of treatment which approximates most closely in its effect to that of a furlough upon a soldier.—Richmond Med. Jour.
"On the Law of the Sexes;" or the Production of the Sexes at Will. By Joseph LeConte, M.D., Professor of Chemistry and Geology in the University of South Carolina, Columbia, S. C.

The following is a very brief extract, condensed from the American Journal of Science and Arts, for July, 1864, and January, 1865, of an important memoir of M. Thuny, of Geneva, and of an account of some experiments of M. M. Coste and Gerlee on the law of the sexes. The original memoir of M. Thuny was published in the Bibliothèque Universelle in 1863, but, as we have seen no notice of it in the agricultural or physiological journals of the South, we think the intelligent public, as well as the medical profession, will be interested in this abstract.

M. Thuny was first led to his conclusion by the following well-known facts:

1. The fundamental or morphological identity of the sexes. From this he concludes that the difference of sexes is due to slight differences in the process of development of the ovum in its earliest stages.

2. That in plants (those which are unisexual), the character of the sex may be controlled by the management of external agents.

3. That, according to Huber, ova of the bees, if fecundated early, produce workers (females), whilst, if fecundation be retarded until the twenty-second day, all the eggs deposited produce males.

For these reasons M. Thuny concludes that the sex is determined previous to fecundation, or rather by the maturity of the ovum at the moment of fecundation.

It is well known to physiologists that there is a development, and therefore a history to the ovum previous to fecundation. If no fecundation takes place, the development is arrested at a certain stage, and the ovum perishes;
but if fecundation occurs there is a new accession to life's force, which suffices to carry it through all stages of embryonic and extra-uterine life.

Now, according to M. Thuny, during the earlier stages of the anti-fecundation history of the ovum, the sex is female; but if the development continues without fecundation it becomes male. By impregnation the sex is fixed for ever. If, therefore, impregnation takes place while the ovum is immature, and its sex therefore female, the embryo will be female; but if fecundation is delayed until a late period, when the sex of the ovum has become male, then the embryo will become male.

It is easy to see the important practical applications of the law. In uniparous mammalia the ovum leaves the ovary at the beginning of each rutting period in a very immature condition, and passes slowly through the fallopian tubes, the uterus, and finally, if unfecundated, is discharged.

Now, during the whole of this slow passage, the ovum is maturing. If, therefore, fecundation takes place early in the period of heat, the sex of the embryo will be female. If later it will be male.

The period of heat, or generative period (as Thuny calls it), here spoken of, must not be confounded with the season of heat, or rutting season. All farmers are aware that during the season of heat there are regular periods of exacerbation, which in the case of the cow, occur about every two weeks. These are the generative periods spoken of by M. Thuny. They are really menstrual periods, and, if attentively observed, are found to be always attended with slight menstrual discharges. Now, if M. Thuny is right, fecundation at the commencement of the menstrual period will produce females, and later, will produce males. He does not indicate the exact turning point.
Anxious to subject his theory to the test of disinterested experiments, M. Thuny gave minute directions to M. Cornaz, an intelligent Swiss stock-raiser, and son of the President of the Swiss Agricultural Society. These directions were followed in twenty-nine cases, and in every case, without exception, the desired sex was produced. First, in order to propagate the breed of a very fine Durham bull, M. Cornaz wished to get heifers; he made twenty-two experiments and got heifers every time. He then wished to get a few bulls of half breeds to sell to his neighbors; he made seven experiments and got bulls every time.

In the case of multiparous mammalia and birds, the test is much more difficult, and the results contradictory. M. Thuny's observations lead him to think that in the domestic hen "the last eggs laid are the cocks of the clutch." He accounts for this by supposing that in each generative period several ova commence to operate together, but are separated from the ovary successively, and therefore at the moment of fecundation (which takes place in the oviduct), the last separated are the most mature. M. M. Coste and Gebre on the contrary, find that when several ova are fecundated by one copulative act, the first laid eggs produce cocks and the last hens. These results are in accordance with certain observations which are as old as Aristotle. This great naturalist observed that pigeons laid but two eggs, one of which produced a male, and the other a female. The celebrated physiologist, Flourens, confirmed these results of Aristotle, and in addition proved that the egg first produced the male, and the other the female. These observations of Coste and Gerbe, and of Flourens and Aristotle, certainly seem to contradict the theory of M. Thuny on hens; but that may be accounted for on his theory, by supposing that during a single generative period, several
ova commence to develop successively, and separate successively at the same stage of development, and continue their development in the oviduct previous to fecundation. Being thus regularly arranged in the oviduct in the order of their ages, and therefore of their maturity. If all are fecundated by one copulative act, the most mature, or the males would be laid first. Embryologists must settle the important questions we have started. If definitely settled, then it would seem that experiments on hens were best adapted to test M. Thuny's theory; but until definitely settled, experiments on multiparous animals will avail little. In the meantime the experiments of M. Cornaz on cattle have never been controverted.

Such is a brief extract of the memoir of M. Thuny, and of the experiments of M. M. Coste and Gerbre, intermingled, however, with some explanations of our own, in order to make the whole more intelligible. We would like to see the subject taken up by some of our intelligent stock-raisers.

The great importance of the theory, if true, both in a scientific and practical point of view—both to the physiologist and farmer, can not be doubted. But the history of the theory can only be accomplished by intelligent and very careful observers. The physical signs of the generative period differ in the different species, and in different individuals of the same species, particularly in domestic animals. It is always well marked in wild animals, but in domestic animals it is often obscure. Close and patient observations will, however, overcome all these difficulties. Nashville Journal Med. and Surg.
On Dislocation at the Shoulder-joint. By Dr. G. Hamilton, Falkirk.

[The difficulty in reducing a dislocated shoulder is frequently that it is impossible to fix the scapula whilst extension is made. Many plans have been recommended and tried, such as putting the arm through a common ladder, putting a transverse bar in the axilla, and placing the patient in a high-backed chair, with his arm extended over the back.]

About two years since, I met with rather a difficult case, in the person of a large-bodied and very muscular man, in which I took advantage of a huge arm-chair, with a strong high back, which I found in the house. On this I placed a pillow, for the axilla to rest upon, and with the assistance of two strong men I reduced the dislocation very satisfactorily. Another followed, shortly afterward, where I had no suitable arm-chair, but where I found a common screen for drying clothes, and this, with the pillow, also did very well. In a third case, neither of these being at hand, I mounted the patient on a table, placed the axilla on a pillow on the top of a door, and succeeded equally well. About six months since I had, unfortunately, to make personal acquaintance with this accident. In passing over a railway bridge, my horse took fright at a passing train, and came down with me. In stretching out my right arm to save myself, dislocation at the shoulder took place, of which I was immediately made aware by the ugly tearing sensation that occurred. Fortunately, a house was near at hand, in which I received shelter. Without losing a moment, I looked about for some suitable apparatus with which to effect reduction. Finding nothing better, I got a narrow table, on which I placed, on its side, a long narrow stool, such as is found in cottars' houses. On the top of this I had a pillow placed, on which I rested my axilla, my body being
placed between the two feet of the stool. Two strong men, who were at hand, kindly lending their assistance, reduction was effected after a few minutes' traction. I was so much pleased with the results in these instances, that I was thinking of having constructed a suitable apparatus which I could keep by me for use in such dislocations, when I cast my eyes upon a set of painter's steps, which immediately struck me as precisely the article I wanted. I have used this now in three cases, and its use seems to me to give very considerable advantages over the modes of reduction generally employed.

The "steps" I use are four feet ten inches high, and the moveable support should be fixed with an iron rod, and not with a rope, as is often the case, as the former secures a greater amount of steadiness. A pillow is laid across the top step, and the patient ascends as high as may be convenient, of course placing the axilla on the top of the pillow. One or two assistants now lay hold of the arm, drawing, at first, steadily outward and slightly downward, traction in the latter direction being gradually and cautiously increased by approximating the arm to the steps. Reduction in all the cases I have had has been effected easily, and even, if I may use the expression, elegantly, but none of the dislocations had remained unreduced for more than twenty-four hours. The great power that we here possess, however, seems to me to render it highly probable that, in cases of longer standing, this simple apparatus will also be found very efficacious.

The three agencies mainly to be relied on in ordinary cases of shoulder-joint dislocation are evidently extension, counter-extension, and leverage, and especially the combination of these. When the dislocation has remained long enough unreduced for adhesions to form, perhaps, also, the putting in practice preliminarily some such
manoeuvre as Sir Astley Cooper saw the Lancashire bone-setters use, where they rapidly whirled around the arm before attempting reduction, may be of importance to the operator.

In using the "steps," their height is very convenient for exercising extension, while the counter-extension required is made to a great extent by the weight of the patient's body, the rest being easily supplied by the foot of an assistant. The height, again, is very important in exercising leverage power, and its amount at command is enormous, and of course requires caution in its use. In laying hold of the arm of a person placed in a position for experiment, I have the feeling that I could with ease, if I wished, produce either dislocation or fracture of the humerus. Here, also, the combination of these powers is easy and natural, simply by causing the assistants to approximate the arm to the steps. Almost all our best surgeons have dwelt upon the importance of employing leverage in these cases, and yet the usual modes of reduction supply this very ineffectually. The heel in the axilla, or the knee of an assistant, gives us but little; while, when the pulley is employed, leverage power, from the points of extension and counter-extension being fixed, is lost altogether. To remedy this, I recollect seeing Mr. Liston, as he recommends in his "Operative Surgery," endeavor, with a towel under the patient's arm, to lift up the head of the humerus; but the power given by this means is evidently very slight compared with such leverage as can be got in using the "steps." With these, even should the pulley be used, leverage could easily be combined with extension, by gently moving the steps forward; or, perhaps, this might be done more effectually and continuously by having wheels attached to the steps.

In brief, this modification of the usual modes of reduction of these dislocations, which I have proposed, seems to possess the advantages—
1st. Of enabling the surgeon to dispense with his personal exertions.

2d. It gives an amount of power in extension and leverage limited only by a considerable of the resistance possessed by the tissues; and it also enables the operator easily and naturally to combine these powers.

3d. The position of the patient gives perfect freedom for the administration of anæsthetics, if such should be wished or required.—*Edinburgh Medical Journal*, Sept., 1866, p. 248.

On a New Method by which Malignant Tumors may be Removed with little Pain or Constitutional Disturbance. By Dr. W. H. Broadbent, London.

The attention of the author was directed to the treatment of cancer under the following circumstances: In 1864 he was consulted by a lady suffering from cancer of the breast. By his advice the breast was removed by Mr. Walter Coulson. The disease returned, and was again removed in August, 1865. In May of the present year, a tumor was growing more rapidly than ever near the cicatrices of the former operations. It was decided that no further removal was advisable; and, unless something could be done, a miserable fate was before the patient. The hypodermic syringe is now in the hands of every physician; and it seemed to the author that by it some fluid might be injected into the tumor which might so far alter its structure and modify its nutrition that its growth might be retarded or arrested. After considering the various substances which presented themselves to his notice, he selected acetic acid, for the following reasons: 1. This acid does not coagulate albumen, and might, therefore, be expected to diffuse itself through the tumor; and the effects would not be localized at the point injected.
2. If it entered the circulation it could do no harm in any way. 3. Acetic acid rapidly dissolves the walls and modifies the nuclei of cells on the microscopic slide, and might be expected to do this when the cells were in situ. 4. It had been applied with advantage to common ulcerations.

On May 18 the first injection was practised. The tumor was of about the size of a small egg, and a patch of skin of about the size of a shilling had become adherent to it. The needle was introduced through sound skin an inch or more from the part involved in the disease, and passed to the centre of the mass. About thirty minims of dilute acid (one part of acid to one and a half or two of water) were injected. It gave little or no pain. Next morning a bulla containing dark bloody fluid was found to occupy the patch of adherent skin.

May 23. This portion of the skin dry, hard, and horny; the adjacent part of the tumor not so hard. Again injected.

The patient, residing in the country, was not again seen till June 7, when the piece of skin mentioned was found detached from the surrounding sound skin; and a probe could be passed in all directions to a distance of three-quarters of an inch or more between the tumor and the healthy structures. A little discharge issued from the fissure mentioned. Injected on this date, and again on the 9th, the acid used being little stronger. It gave a little pain, and swelling and tension of the parts around followed.

On June 13, a few days afterward, there was a free discharge of fluid and solid portions, with relief of the swelling, etc. No feotor whatever attended this discharge, which afterward diminished greatly.

Seen again on June 26, when, on external examination, the tumor was found to be much smaller; and, on passing
a probe into the opening, it entered a large cavity extending on all sides. Part of the walls seemed free from malignant structure, but at several points a crust of cancerous deposit remained. On attempting to inject, it was found too thin to retain the fluid, which either entered the tissues and gave great pain, or made its way into the cavity. The cavity was stuffed with lint saturated with dilute acid, and the case left in the care of the family medical attendant, who was to inject as he saw opportunity.

July 13. No impression made on the remaining disease, which had, in the opinion of the medical man, extended somewhat. Carbolic acid was tried for a few days as an application, but discontinued, and the cavity dressed daily with strong acetic acid by the medical attendant, and injections practised daily. This energetic treatment gave much pain, and excited inflammation all around.

When again seen by the author on August 4, there had been considerable hemorrhage, which had been arrested by free application of tincture of sesquichloride of iron. The result, however, was apparently the entire removal of the remains of malignant disease; and when last seen, a healthy granulating surface was left at every point.

Three other cases were related by the author. The author further formulated certain conclusions from the experiments detailed, and stated the cases to which, in his opinion, the treatment was not applicable. Guided by his experience, he considered large quantities of dilute acid preferable to stronger acid; and he would not, without great hesitation, attempt the destruction of any tumor which had not involved the skin. His aim had originally been, as stated in the early part of the paper, not necrosis of malignant tumors, but a modification in their nutrition. The theoretical grounds for this hope were, that
cancer owed its malignancy to its cellular (to use a nomenclature now almost antiquated) or foetal structure; and that in acetic acid we had an agent which might be expected to diffuse itself through the tumor and reach the cells, and, having reached them, to effect changes in their structure, and affect them vitally, while it could scarcely do harm. The results he had brought before the profession at the earliest possible moment. The ultimate value of the treatment he left to be decided by a more extended experience. It was important to use large quantities of dilute acid, and not to have the acid too strong.—*Medical Times and Gazette, Sept. 1, 1866, p. 229.*

Rapid Cure of Cynanche Trachealis and Membranous Croup, by means of insufflation of pulverised Nitrate of Silver. By Dr. Guillon.

Cynanche trachealis and membranous croup carrying off new victims every day, I think it my duty to call attention to a treatment by means of which that disease is very promptly cured, even when the false membranes have extended to the larynx. This treatment, the advantage of which has been demonstrated to me by long experience, consists in the insufflation of a very fine powder of nitrate of silver on the diphtheritic membranes and the surrounding parts. Were this treatment more generally known, it would in many cases have done away with the operation of tracheotomy, which is performed with success only when the disease does not extend beyond the larynx.

For the first time, in 1828, I had recourse to insufflations of nitrate of silver with two patients suffering from cynanche trachealis; after having ascertained that alum was powerless to prevent the spread of the disease, and that cauterization with a sponge dipped in hydrochloric
acid could not reach the false membranes behind the pillars of the palate, above it and in the larynx.

Experience having taught me, at a later period, that nitrate of silver in solid pieces left in the mouth a taste more disagreeable than when it was pulverized, I adopted the powder, and have used it pure, well pulverized, and perfectly dry. Should it be in any way damp, it can be easily dried by holding it in a silver spoon over a candle or hot coals. The only point of importance with regard to the instrument, is to observe that the powder on leaving the tube is spread all round, and not projected in a lump covering only one place.

The advantages which I have invariably obtained from that treatment, make it a duty on my part to call to it the attention of my confrères: 1st. Because the use of nitrate of silver, finely pulverized and carried by insufflation on the diphtheretic membranes and surrounding parts, cures the disease very quickly, when it begins by the mouth and larynx. 2d. Because I am convinced that a good many persons who have died of cynanche trachealis (angine pseudo-membraneuse), the march of which has been impeded neither by cauterizations with liquid caustics nor other known remedies, would have been very promptly cured, had the insufflations of pulverized nitrate of silver been used. 3d. Because the projection of that substance on the false membranes behind the pillars of the palate, on the palate itself, and in the larynx, causes their quick expulsion. 4th. Because the styptic action of that salt on the mucous membrane prevents the disease from spreading to the nasal fossae and larynx, and from bringing on membranous croup and membranous coryza. 5th. Because the astriction produced by the expulsion of the false membranes, spares the patient the intoxication, the diphtheritic poisoning, resulting from absorption, when the disease is not checked in its course. 6th.
Because, cynanche trachealis being a local disease when it begins, this local medication, with a suitable regimen, ought to be preferred to emetics, purgatives, etc., prescribed by some physicians to destroy what they call the specific morbid element.

It must also be used in preference to the substitutive medication, recommended by Dr. Trideau, which does not prevent diphtheritis from extending from the pharynx to the trachea, and from constituting a croup which soon becomes fatal. Hear what he says (page 11 of his book): "The croup which follows cynanche trachealis, we must admit, will almost invariably resist all sorts of treatment."

I must here observe that, had this treatment been more general, we should not have seen so often those cases of paralysis brought on by diphtheritic poisoning, which happen in the course of that disease—paralysis of the æsophagus, which compels the use of stomach tubes for the introduction of food, as also those cases of sudden death resulting from paralysis of the respiratory organs.

As the insufflations are performed in two or three seconds, and the pain produced by the nitrate of silver is only felt later, if the patient presented any symptoms of incipient croup, the first insufflations should be made when he takes a deep inspiration, so that the powder may reach the larynx and stop the croup in its beginning, before the pain is developed.

As the diphtheritic membranes are sometimes formed again, I use astringent gargles, and should these fail, I have recourse to a new insufflation of nitrate of silver.

In 1858, Mr. B. and his son were both attacked with cynanche trachealis. The insufflation in Mr. B.'s mouth was performed in presence of Mr. Bretonneau; that on the son, in presence of Mr. Blache. Two insufflations in each case were sufficient to insure complete success. Another cure was obtained on a patient of Dr. Delpech,
a young Belgian princess, suffering from cynanche trachealis covering the whole palate and pharynx, with violent fever and engorgement of the submaxillary glands and cervical ganglions. Several cauterizations with hydrochloric acid having obtained no result, two insufflations of nitrate of silver were performed at two days' interval, and were perfectly successful. The first insufflation was done at four o'clock in the afternoon; and at our visit the next day, the mouth and pharynx were found entirely free of diphtheritic exudations, and fever had ceased. Two days afterward, and notwithstanding the use of alum gargles, new membranes were formed; when a third and very light insufflation was performed, and this time the cure was complete. Several other examples might be cited, but these we consider as sufficient.

Wishing to know how far the nitrate of silver penetrated into the aërial tubes, we made (Mr. Trousseau and myself) two insufflations to an average-sized dog. On examination, we found the powder had reached the end of the second divisions of the bronchi.

Since, by insufflation, the powder can be carried as far as the second divisions of the bronchial tubes, it can be practiced with advantage to blow powder into the larynx and trachea, in cases of incipient membranous croup; that is to say, in circumstances where tracheotomy is tried with some chance of success, but often with an unfavorable result. Since this local treatment, used early in diphtheritis when it begins with the mouth, has obtained results which can not be reached by applications of liquid caustics, insufflations of alum or tannin, the use of chlorate of potassa, of bromide or iodide of potassium, mercurials, emetics, purgatives, balsams, etc., it seems to us that this local treatment ought to receive the preference over all others.—Revue de Thérapeutique.
Dressing of New Born Infants. By W. B. Fletcher, M. D., Indianapolis.

If there be one custom of time-honored folly, which we have continued to this day in the "lying-in-chamber," it is that absurd and cruel system of the first dressing. There is no reason for quoting from the most ancient authors to find absurdity upon this point, when our most recent text-books and lecturers give almost the same directions. But even if they did not, how many physicians ever personally attend to this important point, whereby the comfort of the child and mother are all at stake. In most cases, as soon as the child is born and the cord divided, it is tied and the baby given to an employed nurse, some wise neighbor or friend. The question of "What will she do with it" may best be solved by watching her. First she huddles it up in an old shawl or other garment. She is careful to cover its head, as though it were a young puppy she would smother; or rid the world of an infant cat. In a few moments, some one brings water, soap, and towels, and also a heap of old linen, and a trunk full of new. The good woman now turns to the blazing fire, or the hot stove, that the baby may not take cold, and while the youngster implores with yells and cries, she bakes its tender skin on one side while she dabbles its head, eyes, mouth, and body with a vile solution of frequently very bad soap. After this ceremony has been past (it matters not whether the child be cleaner than before) she turns her attention to the cord, upon which she frequently deposits, slyly, some pestiferous saliva, "Its healin'," she says, and now she follows authority. 1st. She cuts or burns a hole in the centre of a bit of cloth, through which she draws the cord; 2d. She places a rag upon
3d. A rag upon that; and 4th. She puts on a "binder." Now it is upon this operation she prides herself, if she be a hireling, that is the closeness and compactness with which she can pin the binder round the expanding body of the infant; 5th. She puts on a little garment, called a shirt, which is in fact without body, neck, or sleeves, as far as protection goes; 6th. She puts on the "square" with more pins; 7th. She pins on a "waist" with a long skirt; 8th. Another waist with a long skirt; 9th. A dress. And now the baby is presentable. The doctor sees it's all right, and goes home. He hears not within an hour the stifled screams of compressed lungs, that with every breath are expanding the chest, and the nurse wisely says it appears "colicky," for which it must be drenched with some damned decoction of catnip, sling, brandy, laudanum, water, and molasses, etc.

The next visit the nurse swears it's a good child, only a little "colicky," but she can cure that, and away the doctor goes, where he can not hear the little one cry, and see it dosed for screaming on account of the "cord" having become a half putrid, half drying mass, glued and ulcerating to the tender belly.

This picture may be overdrawn for some cases, or for some countries (if there be any), where professional nurses are selected for their intelligence, and not from the most "vulgar ignorant." One thing I am sure of, and that is, upon carefully examining, you will find some of the above named outrages, if not all of them, in force at once.

In my experience, adopted in some sixty cases, I have found the following method of procedure give the most comfort to all hands, by giving the baby no excuse for those cries, which are hardly ever heard if an infant is not uncomfortable.

My baby is first quickly washed by oiling the hand and
rubbing the parts to which the secretions have adhered, and then with a soft cloth, soft water, and trace of castile soap, and frequently with warm water alone, the infant may be cleaned. Then I begin dressing. 1st. A bit of lint or linen, two inches square, is tied closely upon the end of the cord like a cap; 2d. The square, or diaper, of soft and old material, is put on loosely with a diaper pin; 3d. A fine warm flannel gown (like a woman's night dress), with long sleeves, and coming below the feet, is put on, and thus the baby is quickly and comfortably dressed, and placed in its mother's arms, where the temperature of her own body is food and strength for her new-born babe, until the milk is secreted.

Let any physician try this plan, and he will meet with opposition from every old lady in the land. "Why, doctor, its bowels will burst out when it cries, if you don't pin a binder on!" and a number of similar excuses, for not being directed by the physician. But the physician will be rewarded by finding the infants more clean, sleeping more, and eating more than when uncomfortably dressed, and I believe less liable to umbilical hernia and ulceration about the cord. I have known children rescued from apparent suffocation by simply unpinning a close binder.—*Cincinnati Lancet and Observer, July, 1866.*

Ulceration from Hypodermic Injections.

Dr. W. S. Mitchell reports the following case in the *Southern Journal of Medical Sciences*:

A male Swiss, aged twenty-three years, was admitted to the Charity Hospital, New Orleans, suffering from partial emprosthotonos, all the anterior muscles of the trunk being rigid in a semi-contracted condition, muscles of the arms and legs rigid, arms extended from the body, but flexed at the radio-humeral articulation; muscles of face slightly rigid, inability to articulate understandingly,
mind clear, tongue much furred, bowels very torpid; little if any acceleration of pulse or increase of heat of the body. In seeking for an exciting cause, a large irritable ulcer, the size of a Mexican silver dollar, was found to be located just above the insertion of the left deltoid muscle; the border of the ulcer almost a circle, clean cut; the areolar and adipose tissues beneath entirely destroyed, presenting to view the uncovered muscle, which had the appearance of a piece of partially roasted beef, cut across the fibres, conveying to the mind the idea of some corrosive action.

The symptoms gradually but rapidly increased in intensity, and the patient died. On inquiry, it was found that the patient had been treated two months previously in the same hospital for intermittent fever, by hypodermic injections of quinia, the injections having been practiced over the lower deltoid region of the left arm. Recovering from the fever, the patient was discharged, but in a few weeks again presented himself with the deep ulcer occupying the arm injected. Dr. Mitchell inclines to the belief that quinine is of itself a positive and powerful irritant, when introduced into the tissues by the hypodermic method; he has seen in several instances much pain, and considerable redness result from injections of small quantities of quinia, simply suspended in water, without any of the dissolving acids, and he is satisfied from hearsay, that this is not the only case of ulcer which has followed the hypodermic use of quinine in the city of New Orleans.

Searching for Bullets.

The Lancet contains an interesting record of observations in the military hospitals of Dresden, by Dr. Bruce, of University College, London. There was ample opportunity for observing the effects of the different bullets
employed by the three armies, and after a careful examination, Dr. Bruce says he can not agree with the generally-entertained opinion that the bullet of the Prussian needle-gun produces a less serious wound than that of the Austrian Minnie rifle. The Prussian soldiers fired at short ranges; the Austrians and Saxons at long ones. The doctor continues: The search after bullets and their extraction was a source of the greatest interest, both to surgeons and patients. It often proved a matter of the greatest difficulty to determine whether a bullet was lodged in the body or not; frequently the men would positively assert that the ball had been extracted on the field, when it subsequently proved not to have been the case. The excitement produced in some men by the sight of the bullet was most astonishing. An Italian seized his bullet, bit it violently, and cursed it so furiously that it had to be taken from him, to prevent him injuring himself. A Prussian soldier, apparently by no means an excitable fellow, on seeing the ball which had been removed from his thigh, burst into tears, and shaking hands with us all round, divided his attention between blessing us and cursing his bullet. The men always kept them as valuable relics, and would not have parted with them at any price. The "Garibaldi sonde," as it is called after the illustrious hero for whose sake M. Nelaton invented it, proved of the greatest service. I have known a bullet, buried at the depth of four inches in the fleshy part of the thigh, recognized by the faint streak of lead left on the unglazed porcelain at the end of the probe. By this aid it was easy to determine between a fracture-bone and a bullet. Of the instruments used for extraction, the ordinary bullet-screw and long forceps were perhaps the two most commonly employed; but the new American bullet-forceps was very highly spoken of. With regard to the apertures of entry and exit, there was, as a rule,
very little difference to be observed between them; they were often of the same size, and presented very much the same character. I frequently observed that the supposed aperture of exit healed more rapidly than the other. The account of the patient could rarely be trusted, and I found the holes in the clothing to be the best guides, as here the aperture of exit was invariably the larger and more regular of the two. In one case, where a bullet had penetrated both thighs, it was only by examining the trousers that we could determine the direction it had taken, the patient's account proving incorrect.—*Medical and Surgical Reporter.*

Non-Mercurial Treatment of Syphilis.

Mr. R. W. Dunn, in a pamphlet on the mercurial and non-mercurial treatment of syphilis, gives the results of experience of many authorities, as well as of his own; and from these draws the following deductions. 1. The primary sore can be healed without mercury. 2. Mercury does not prevent secondary symptoms. 3. The secondary symptoms that follow the non-mercurial are slighter than those that follow the mercurial treatment. 4. Secondaries are more frequent after the mercurial than after the non-mercurial treatment. 5. If the patient be of a strumous diathesis, mercury ought to be avoided. 6. Rupia and bone-disease seldom follow the non-mercurial treatment. 7. Perhaps the disease disappears more rapidly under the mercurial treatment, but the result is not effective or lasting; and by avoiding the use of the drug altogether, we do not damage the constitution, and nature, with a little help, will cure the disease. 8. In hereditary syphilis, the rate of mortality is lower, and the duration of treatment is shorter, when treated without mercury.—*Brit. Med. Journal.*
Medical Statistics.

Claude Bernard, in his *Introduction a l'Etude de la Medicine Experimentale*, just published, gives us his views as to the value of statistics in medicine. The opinions of such a man on such a subject will interest most of us.

There are (he says) political, social, and medical theorists, among whom statistics have a sort of mysterious veneration. Everything can be proved by statistics. It is a convenient way of getting rid of troublesome facts and of presenting hypotheses in an imposing form. Thus, when the number of pulsations are measured by an instrument throughout the day, and an average is taken of the varying numbers, "on aura precisement des nombres faux." The figures are exact, the average is an error, for it represents no actual condition. The pulse diminishes during the intervals of fasting, accelerates during digestion, and varies continually according to other influences, such as movement and repose; all these biological peculiarities disappear in the average. In like manner, when averages are struck from calculations respecting secretions, there is a mingling together of the most varying conditions; a secretion which is alkaline at one moment is acid at another; in the average it appears a compound of the two. When a physician collects a number of cases, and from them draws up a description which represents the symptoms on an average, he describes that which never existed in nature.

This error of averages is strikingly exhibited in the various theories of food propounded by physiologists. The amount of oxygen, or any other substance, consumed by an animal in one day is estimated and compared with the weight of the animal; but the weight represents a total of various substances with which the oxygen has very various relations, some of them being totally unaltered
by the oxygen, others profoundly affected by it. In like manner, a poison is estimated according to the amount required to kill an animal of a certain weight. "Il faudrait pour être plus exact calculer non par kilo du sang et de l'élément sur lequel agit le poison." But even then the mere weight tells us little. Other conditions interfere, and these, which vary with the age, size, sex, state of digestion, etc., of the animal, determine the effect of the poison.

Obviously, the first condition of statistical comparison must be that the facts compared are exactly observed and are capable of being reduced to unities comparable with each other. How often is this condition present in medical statistics? Every one familiar with hospitals knows what numerous causes of error have vitiated the reported "cases." Very often the diseases have been named at hazard after a superficial diagnosis; and even when the cases have been carefully examined, no two precisely resemble each other; age, sex, temperament, the complication of other diseases, and a crowd of circumstances interfere; and if this is so with two cases, how much more will it be with a hundred? The average is supposed to eliminate all these differences; but whenever the physician has a case before him, that case is individual, not an average; its peculiarities are not eliminated, yet on its peculiarities must depend the effect of his treatment.

M. Bernard reminds us that it is only when the cause is quite undetermined that any one thinks of applying statistics. No one enumerates cases in which oxygen and hydrogen compose water; no one counts the number of times in which division of a nerve paralyzes its muscles. It is only when the cause is unknown that cases are counted, and then the enumeration throws no light on the conditions. For example: some experiments showed
that the anterior roots of the spinal nerves were insensitive; other experiments showed that they were sensible; would it have thrown any light on this difficulty to say that the law of sensibility in the spinal roots is that of twenty-five per one hundred? Or ought we to invoke "la loi des grands nombres," and say that the roots are as often sensible as insensitive? It would be absurd. There is obviously a reason why they are sensible, a reason why they are not, and it is these reasons we are to discover.

A great surgeon performs an operation many times; he then gives a tabular statement of the cases which have been fatal and the cases which have been successful, and statistically concludes that the mortality of this operation is two in five. What will this tell us respecting the certainty of the next case? We can not know whether it will be one of the two or one of the three. We ought to know what are the conditions which will range it infallibly under one or the other head. Instead of an idle enumeration, we should make a fruitful study of each special case, and discover, if possible, the cause which renders the operation fatal. The same reasoning applies to curative remedies. A certain remedy has in twenty instances been followed by a cure; in seven instances no cure has been effected. You will say, perhaps, that there is twenty to seven in favor of success. Not in the least. You do not know how many of those twenty patients would have recovered had there been another remedy tried, or no remedy at all; you do not know what was the precise action of the remedy, what changes it effected in the organism, what its effects will be on the organism now about to be submitted to it. As a great mathematician observed: "La loi des grands nombres est toujours vraie en général et fausse en particulier." And as to the "compensations which bring about the
law," they are useless in medicine. Mathematicians admit that if a red ball has come up fifty times in succession, that is no reason why the white should come up on the fifty-first; the white ball is certain to come up some time or other; but its appearance depends on specific conditions which have nothing to do with what has gone before.

Is there, then, no utility in statistics? M. Bernard is far from saying so. He admits that statistical results lead to probabilities and suggest research; but he protests against the idea that medicine must be only conjectural. He insists on the necessity for a scientific basis, and declares that every method of treatment which is not grounded on a clear recognition of the casual connections between agents and the organism is mere empiricism, not much removed from charlatanism.—American Journal.

White Paste which will Adhere to any Substance.

Make the following mixture: Sugar of lead, 720 grains; and alum, 720 grains; both are dissolved in water. Take two and a half ounces of gum arabic, and dissolve in two quarts of warm water. Mix in a dish one pound of wheat flour with the gum water cold, till pasty in consistence. Put the dish on the fire, and pour into it the mixture of alum and sugar of lead. Shake well, and take it off the fire when it shows signs of ebullition. Let the whole cool, and the paste is made. If the paste is too thick, add to it some gum water, till in proper consistence.—Journal of Applied Chemistry.
THE MEDICAL ASSOCIATION OF GEORGIA.

The approaching session of this body will be held at Griffin, on Wednesday, 12th April, and its importance suggests the appropriation of our editorial space to its consideration. The members of this association, in referring to its past meetings, instinctively recall the paucity of members in attendance, and, notwithstanding its high functions, the little interest manifested by physicians at large. A few who were ardently devoted to the advancement of science, and ambitious to place the society above a mere nominal, formal gathering of physicians, sought to make it a true exponent of the scientific labors of the profession of the State. Through their agency many valuable papers have emanated from it from time to time—contributions of intrinsic value to the scientific, and of practical avail to practitioners. The pages of this journal (its official organ) for the last twenty years are rich in practical articles and essays upon the different branches of medicine, which, in the aggregate, constitute a volume of great value—one, indeed, worthy of addition to any medical library. In this is exemplified a fact that we have seen elsewhere stated, namely, that medical journals can no longer be regarded as mere "finger-posts," but as true exponents and representatives of the science in its progress to perfection and exactness. The announcement of a discovery or the new interpretation of an old accepted idea is made and diffused through this medium, and long in advance of the more stable works upon the subject, the verdict of the profession is returned. So that a diffusion of knowledge is obtained which could not
be so speedily and thoroughly done by any other means. A practical familiarity with the literature of the medical press is, therefore, one of the most profitable resources of the physician, and, indeed, may be taken as a test of his acquaintance with the present state of the science. Journalism instils its information silently and satisfactorily, a fact which will receive its due weight from those of our readers who have complacently watched and now recognize the great change which at present constitutes medicine a *temple of conservatism* instead of a school of "excessive medication."

But, not to digress further, the next session of the State Society we believe to be the most important since its organization. Its re-organization finds the profession in a far different condition from that of the past, and it should not be left to the direction of a few. The modest practitioner must not consign his interest to ambitious scientific aspirants, but all must move in concert for a common interest. At the time of its foundation we were in an independent position, one, indeed, which warranted the absorption by the purely scientific of all other interests; but the business interests, at least for the time-being, must receive equal attention. Emancipation has *robbed us of the* basis of that independence; and, until the latter is, by some means restored, the profession must remain crippled in resources, and shorn of their strength. Heretofore it has been regarded as mercenary to intimate pecuniary matters in connection with medicine, these, by common consent, being generously absorbed in the benevolence and nobler aspects of the calling, but the time has come when the instinct of self-preservation compels their consideration. Spoliation has deprived us of our resources, and however modest or delicate, physicians must no longer disregard their long-neglected business affairs. One way to foster them is through the State Association,
where, after conference and discussion, a concerted movement may be inaugurated to relieve the present dependence and restore lost influence. It is to further this object that, at our solicitation, the article upon the "Legal Status of the Profession" has been prepared. Many, doubtless, will be astonished at the exposition, and receive the first intimation of the fact that they not only have no legal rights, but by practicing for "fee or reward," without a license, are openly violating one of the statutes of the State, thereby incurring the double risk of a loss of their earnings and of a criminal prosecution, the penalty of which is fine and imprisonment. As stated in the article referred to, all physicians of the rational school of medicine not in practice on 1st January, 1863, under a legal diploma, are debarred by law from the collection of claims, and while those who have been thus engaged between the adoption of the Code (1862) and March 6th, 1866, are relieved from the penalties of the offence against the law, yet they are equally powerless to enforce payment. The possession of a diploma confers no right to practice for fee or reward within the limits of this State, unless the possessor be a graduate of a Medical College having the right in its charter to invest its graduates with all the rights and privileges of a licentiate under the law. All of the Colleges are not clothed with this authority, and, as a public journalist, it is our duty to apprise the profession of the fact. Of the graduates of last year, only those of the Medical College of Georgia, now or since practicing in the State, without a license from the Medical Board legally established, are authorized so to do. Where the charter does not give the vested right, a license from an Examining Board, which does not really exist, is, in the terms of the law, necessary to prevent prosecution, and indispensable to the collection of debts. Physicians coming into the State are
not protected by their diplomas—an intermediate step is required, namely, a license which must be secured and duly recorded.

It may be objected that such a law is a "dead letter:" it may be so far as a prosecution is concerned, but, in the case of a suit, it is all-sufficient. It can not be set aside or rendered inoperative by judge or jury.

In this respect the quack has the advantage over the regular practitioner; the Legislature has placed a premium upon Homeopathy, Hydropathy, Dutch and Indian Doctors, "Dr. Durham's Urine or Water System,"* et id omne genus, by waiving the necessity for additional license, not, we flatter ourselves, because they thought the rational school less honorable, but upon the principle that the greater license these pretensions had the sooner they would explode.

It is useless to pursue the subject further. Suffice it to say, that all physicians not in practice on the 1st of January, 1863, who may have come into the State or graduated at any College not possessing the vested right adverted to, and now practicing, require a license as an indispensable pre-requisite to their lawful action. The licensing Board of Physicians exists in law, but not in fact. This state of affairs should no longer exist: either abolish the law or vitalize the board.

Apothecaries are even more seriously affected than physicians, and as many of the latter are also engaged in this capacity, we give the law upon the subject. A diploma does not clothe the graduate with the right to sell drugs (beyond the dispensing of them in the pursuit of his practice) without a license from the Examining Board.

* In 1854 a special act was passed amendatory of an enactment in 1852, authorizing one Wm. C. Dabbs, of Floyd County, to practice "Dr. Durham's Urine or Water System," in lieu of the "Homeopathic System," a fit substitute, doubtless, each for the other, in the minds of the legislators.
When he becomes an apothecary he must comply with the law as determined for that class of merchants.

The act of 1825 required apothecaries to obtain a license from the Medical Board, and section 1,351 of the Code (adopted 1862) as amended by the act of 1866, reads:

"No person in this State shall open or keep an apothecary store without first obtaining a license therefor from the Medical Board of his own school."

Section 1352. "Any person violating the preceding section is liable to indictment, and, on conviction, to be fined not less than one thousand and not more than five thousand dollars, and for continuing after conviction to the like fine and imprisonment not exceeding six months. The onus of proof is upon the defendant to show his authority."

Section 1353. "Druggists are exempt from obtaining said license, who were engaged in said business prior to 24th December, 1847, and who continue so at the adoption of this Code; and merchants and shop-keepers may deal in medicines already prepared, if patented, or if not patented are legally warranted by a licensed druggist."

Prominent among the business interests to be canvassed is that of the relation of physicians to plantation practice. Formerly it was an individual matter of the planter, or owner of slaves, but now it is a collective interest, in which at least three parties are concerned—the freedman, contractor, and physician. It is plain that the contract system is the only one now practicable for general purposes, and it behooves the profession to adopt some uniform scale of charges which will secure general support. If the physicians of each neighborhood are left to such desultory plans as each may see proper to adopt, the result will be continued dissatisfaction to all parties. If a uniform system prevails, each county will soon be mapped out into practicing districts included in a radius of five or eight miles, thereby securing a fair distribution of the
labor and gain, and equalizing incomes. We have been in communication with physicians in different parts of the State, and find a general testimony borne to the value and practicability of the contract system, the terms being fixed by the distance and number of laborers. We would suggest to our country brethren, who are most interested, the propriety of holding meetings for the discussion of the matter, and the appointment of delegates to the Association, who may come prepared to represent their views and mature a plan of operation. Not being members of the Society already, need not deter them, for all of good repute will be welcomed to an immediate and full connection, and to a participation in its deliberations.

At the last session the following resolution was adopted:

"Resolved, That the permanent location of the Association at some suitable place, in the opinion of this meeting, is called for by the highest interests; and that, in view of said interests, we do invite and call upon its members, in every portion of the State, to meet with us at our next annual meeting, and settle definitely this question."

We recall it only to condemn it. We cannot perceive how its highest interests require its location. If this is done its organization must likewise become permanent—a condition which will soon place it under the control of local influences. Its members are diffused over the whole area of the State, and each section in turn should be favored with its sessions. In imitation of the practice of other State associations, let it continue to alternate the places of its meeting; this will do more to increase its members and bring them into pleasant association, than any other course. Commending the subject to the earnest consideration of the profession, we dismiss it, with the hope that the approaching session may prove fruitful of good to all their interests. W. H. D.
IS A CRYING BABE NECESSARILY COLICKY?

Nothing is more common than the belief that when an infant cries it must have the colic, and that it should be treated accordingly. Now, can it be true that infants never cry unless they suffer pain, and that colic is the most common cause of this pain? Have we not, on the contrary, every reason to believe that the cry of the infant is merely a substitute for language, and is therefore used to make known to the mother or nurse such simple wants as may be experienced by one so young? While it would seem probable that an infant who suffers no pain, and who is sufficiently supplied with its natural food, can have no cause to cry, such is not always strictly the case. There is a great difference in the temper and disposition of infants; some being naturally irritable, cross or peevish, and others good-natured and cheerful. All nurses understand the difference between a good and a bad child; and it would be interesting to take note of these early indices, for the purpose of ascertaining whether or no they may be relied upon as the premonitions of subsequent developments in the adult. Some infants will remain quiet until a sense of hunger or thirst impels them to cry out; while others will cry to be turned over, or to be taken in the arms, or even to be walked about; and if these caprices are indulged, the child soon becomes so "spoiled" that its nurse will have no rest. It is surprising how soon the infant learns by experience what he may exact by his cries; and, although born good-tempered, he may become extremely troublesome if too much indulged. Some of them only a week old will keep the nurse all the time busy, merely because they were not at first allowed to cry at all, without being handled.

It can not be denied that peevishness is, alike in infants
and adults, very often consequent upon the discomfort of bad health; and it is important that the cries occasioned by this state of things be distinguished from those induced by actual pain. A judicious mother or nurse can not fail to discover the difference by a little careful observation, and it should be the duty of the medical adviser to assist in this diagnosis; for until the real cause of the cries be ascertained, there can be no rational medication. The cries of an infant are in reality only symptoms of the mental or physical condition of the child. It is our business to give to them their proper interpretation. The child cries! Is it caprice; is it hunger; is it discomfort; or is it positive pain? These are the questions to be solved before we should resort to medication, if we wish to be consistent with philosophy, or even with ordinary common sense. And yet, how often do we not find infants dosed with “colic drops” whenever they cry!

Most of the nostrums vended as “colic drops” contain opium in some form or other, and some aromatic or carminative. These “drops” are therefore primarily narcotic and stimulant, and secondarily constipating; so that, although they may compose or put the child to sleep, whether the cries proceed from colic or not, their use, or rather their abuse, is objectionable. Again, how are we to determine that the child has colic? Pain in the bowels may depend upon spasmatic contractions of their muscles induced by indigestion, or irritation of some kind; or it may be occasioned by mere flatulency. While the spasmatic pains usually precede or attend looseness of the bowels, such need not be the case with the presence of flatulency. The former pains come on in paroxysms more or less severe, which subside very soon, and leave the patient entirely relieved until they return again. Flatulent colic is more persistent, never so intense, and may be usually recognized by the hollow sound produced by
percussion of the abdomen, especially if this circumstance be taken in connection with the other points in the history of the case.

The diagnosis of infantile diseases is by no means so difficult as is generally imagined. In the affection before us, it is just as easily made out for a child as for an adult. If the physician knows his business, and will use with due diligence the resources of art, he will rarely fail to establish the diagnosis satisfactorily.

If the bowels are regular and the evacuations in a natural state, while the abdomen yields a natural sound upon percussion, has a natural feel to the hand, is not distended nor knotted by spasmodic contractions, is not painful when pressed upon, we may very safely conclude that the child can not have colic.

Have we any good grounds to believe that colic is often almost habitual in infants too young to speak and who can only cry, whereas it is only an accidental or occasional disease in those who can speak and in adults? Such a violation of analogy ought not to be admitted to exist without much more evidence than can be adduced in favor of it.

Ear-ache is very common with children, and may either make them peevish or cause them to cry violently and protractedly. This affection can always be detected by pressing a finger just below or in front of the ear, by which the pain will be much increased and the child will renew his cries. As there is usually but one ear affected at the time, the experiment must be tried on both sides. If the pain be purely neuralgic or nervous, it may be relieved by almost any warm application; but if it be occasioned by the formation of an abscess about to break in the ear (in which case we may usually detect a little fulness or hardness in the angle just below the ear, or in the slight depression just in front of the orifice of the
ear), these remedies are very apt to fail, and we have to resort to a little Laudanum taken internally, or dropped into the ear in combination with a few drops of oil.

Closely connected with the treatment of the so-called colic is the common practice of

Jolting Infants.

If the child be really suffering with colic, it would be as absurd to expect to relieve it by such violent shaking and jolting, as it is to suppose that there is any efficacy in the veterinary practice of making a colicky horse trot up and down the road, until almost exhausted. But if the poor child happens to have pain in the ear or headache, both of which are very common, the cruelty of violent rocking, shaking in the arms, and jostling upon the knees, with the loud singing and jargon of the nurse, must be apparent. The treatment of Sancho Panza by the maid of the enchanted castle was trifling in comparison with this.

The affectionate and tender-hearted mother can not bear to remain quiet while her babe is screaming, and she freely exerts her lungs and limbs to the uttermost in the hope of giving relief. It is a natural and a laudable feeling which prompts her, and the exertion relieves her nervous system by working off the nerve force which would have been otherwise concentrated in the brain. It therefore requires some philosophy, that which emanates from enlightened reason, to examine quietly for the true cause of the child's cries, and to administer the proper remedy. If no medicine be necessary, the child will, if laid comfortably on his bed or held quietly in the mother's lap, very generally go to sleep after crying a little while. It can certainly not go to sleep so long as it is not allowed to be at rest.
Do Children bear Disease better than Adults?

To suppose that children can bear disease better than adults, is to admit that the weak have more powers of resistance than the strong; that an unfinished fortification is better adapted to resist attacks than one already completed. And yet, we continually hear persons manifesting a desire that their children might take the measles, hooping-cough, etc., while young, so as to be rid of subsequent danger! This is a radical error. Children should be kept from sickness as long as possible, for no one can predict the result of what might at first seem to be the most trivial affection.

Common sense should lead us to avoid sickness at all times, and at any age. If we carefully keep our children from visiting houses in which there is any sickness, and remove them from districts affected with epidemics; if, in short, we use due diligence in avoiding all known causes of sickness, we shall have nothing to reproach ourselves, when, notwithstanding such precautionary measures, they are overtaken by disease. The very fact that children are more prone to sickness than others, should incite parents to great watchfulness in regard to their hygienic condition, their cleanliness, their clothing, their food, their exercise, their supply of fresh air, isolation, etc., etc.

The best evidence that children do not bear sickness as well as adults, is to be found in our mortuary statistics, which reveal a frightful loss of life among infants and children. This is equally true with regard to the lower animals and plants. The more tender the plant the more feeble are its powers of resistance, and the more liable it is to disease.

L. A. D.

The American public has already been made familiar with this work through the Medical News and Library, but many of the profession will see with pleasure its reappearance, in its present neat and convenient form.

A work which would represent, in a practical manner, the influence which the recent important and highly interesting researches into the physiology and pathology of the nervous system have exercised, in that most obscure of all the chapters of medical science, the functional neuroses, is just now much needed, and would fill a sensible gap in our medical literature. We can not say that this has been done in the work before us, but the busy practitioner will, we think, glean more practical points from the perusal of this little volume than from more compendious treatises. It is an advantage of the form of clinical notes, which our author has given to this book, that it enables him to dispense with systematic descriptions and details familiar to every one, while it allows him to dwell with greater stress upon new and important facts.

No systematic arrangement is attempted. The different parts of the mechanism are taken up in their natural anatomical order. The work opens with a chapter on General Pathology, in which the author develops the basis of his peculiar views on neuro-pathology. It is to be regretted that this particular part is not more full and explicit, as many readers will be unfamiliar with the recent extraordinary advances in neuro-physiology. In this chapter much attention is justly paid to the interesting and highly important discoveries relating to inhibitory and vaso-motor action. We can not coincide with the
views of the author on either of these subjects. His idea that inhibitory action is purely pathological, and produced by defect, or excess of power in any nerve, seems to us directly refuted, by its undoubted existence as an automatic regulator of cardiac action. Section of the vagi could only accelerate the movements of the heart by the removal of a normal inhibitory influence on the centre of its rhythmical action. On the whole subject of animal heat, and the beautiful part taken by the nerves of the heart, and blood-vessels in its regulation, his notions seem to be exceedingly crude. Had he understood this subject better, he would have spared himself and his readers the curious theory of an alternation in the action of the ordinary motor, and the vaso-motor nerves. This is one of those awful explanatory hypotheses that used to impress us so wonderfully in the old days, when expounded "ex cathedra," but which we find somewhat indigestible now.

In spite of all this, the numerous instances scattered through the book, in which the influence of vaso-motor action in the production of the most varied forms of disease is demonstrated, constitute, we think, the greatest merit of the work.

The Southern practitioner will find here and there through the work, and especially in the chapters on Malarial Diseases, much valuable information in relation to the singular influence of malaria in producing the most varied neuroses, which he will be able to make practically useful when practicing in our malarious country. Among the special chapters, we would especially commend those on Cerebral Paresis and Cutaneous Neuroses, which will be found to contain some novel views and practical hints.

The work is illustrated throughout by copious records of cases, which greatly assist us in making out the author's meaning, where his style is somewhat obscure.
The diagnosis in many of these cases is what would have been designated in our student days as "tally guessing," and some are not above a worse suspicion; but the general practitioner, little accustomed to thread the mazes of the complicated mechanism of the nervous system, where the lesion is frequently at one point while its only manifestation is at others often widely distant, will find in these records of cases, analyzed by a practiced hand, an invaluable guide in practice.

G.

Use and Abuse of Poultices.

In his lecture recently delivered at the College of Physicians, Dr. Richardson made the following remarks on the subject of poultices:

The application of moist heat in the form of poultice to suppurating parts requires, I think, remodelling, in order that it may be placed on a true scientific basis. I am afraid that the common recommendation, "You must put on a poultice," is too often among us all an easy way of doing something about which we are not quite sure, and concerning which it were too much trouble to think long. From what I have recently observed, I fear that mischief is often done by a poultice, which might well be avoided. The people have always a view that a poultice is applied to "draw," as they say—a term in truth which, though very unsophisticated, is in a sense, a good term, for it means what it says. The question for us is, whether it be sound practice to carry out, as a general rule, the "drawing" process, either by fomentation or by poultice.

When a part is disposed to suppurate, the first step in the series of changes is an increased flow of blood through the capillary surface, followed by obstruction, and thereupon by an excess of sensible heat derived from the friction that is set up. Then follows transudation of liquor
sanguinis into the connective tissue, and its transformation, under the influence of heat, into what is called purulent fluid. When to the part in this state we apply moist heat, we quicken suppuration, mainly by upholding the temperature: at the same time, we secure the transference of water from the moist surface into the fluids of the inflamed part, by which tension of tissues is produced, and in the end yielding of tissue at the weakest point.

When the suppurating surface is circumscribed, the rapid induction of the process may be attended with little injury; but when the surface is large and when the exuded fluid is thrown into loose structures where it can burrow readily, the practice, I think, can not be good to extend the mischief. Hence, in the treatment of carbuncle and phlegmonous erysipelas, it can not, I opine, be sound practice in the early stage to apply moist heat. Experience also, not less than principle, warrants this conclusion. In cases of carbuncle especially, I have of late altogether avoided the application of moist heat in the early stages; and, I feel assured, with good results.

But when, in the course of local disease, suppuration is actively established, and is naturally circumscribed; when the increased temperature of the part has fallen to or below the natural temperature—then the value of moist heat comes on with full force; then the tension which is exerted determines the escape of fluid at the weakest point of the surrounding tissue, and, when the fluid escapes or is liberated by the knife, the escape for a long period is aided by the application of moist heat.

The continued application of moist heat for a long time after the escape of purulent fluid is again, I conceive, indifferent practice. It sustains discharge; it sets up unhealthy decomposition of fluids; it produces a thickened soddened condition of skin, most favorable to the production of sinus; and it retards recovery. When a surface
is freely open and suppurating, dry and not moist heat is the remedy. We are in want in these cases of a simple invention; we require something which we can apply as readily as a poultice which shall keep up the temperature of the part, and at the same time take up moisture, and gently desiccate, without injuring the tissues.—Brit. Med. Journal, May 12, 1866.—Am. Journal Med. Sciences.

A Monster.

The following short account of a singular case of labor, and the birth of an extraordinary monster, was sent us by Dr. J. K. Hamilton, of Stone Mountain, Ga.

We very much regret not being able to obtain the much desired examination of the body, in order to ascertain the direction of the cord from the point of attachment, and the exact nature of the other peculiarities connected with the formation of this child.—Atlanta Med. and Surg. Jour., Dec., 1866.

Editors Medical Journal: I was called, on the third of April last, to see Mrs. N., who was in labor with her first child, eight months enceinte.

I made a vaginal examination, and discovered a case of placenta praevia. The pains were regular and persistent, with slight protrusion of placenta during paroxysms. Considerable hemorrhage ensued, which was partially controlled by the tampon, cold applications and rest. The labor lasted about two hours: the afterbirth emerged first, and was followed almost immediately, by the expulsion of the child.

The most remarkable feature of the case was: The umbilical cord was attached to the crown of the head, leading directly from the placenta, seeming to permeate
the brain, or more probably the inner surface of the scalp. The neck was unusually large, caused probably by an undue supply of vascularity and nervous influence, with a consequent development of tissues surrounding them.

There was a cleft in the upper lip, constituting simple hare-lip. The abdomen contained a fissure extending from the epigastrium to near the symphysis pubis; hence the child was nearly disemboweled, with apparent obliteration of the umbilicus. The liver and intestines were well developed, and although it exhibited evidences of recent vitality, it came still-born, owing, doubtless, to the anomalous attachment of the placenta and cord. The father of the child, during the late war, lost his left forearm in Virginia, it being amputated about six inches below the elbow: the child, also, on same side, had its forearm off—the stump bearing a great similarity to the arm of the father.

The assimilation process in this instance, as respects growth and development, was normal, the trunk and limbs being properly proportioned.

I do not propose, in this short report, to attempt to explain the causes which may give rise to these preternatural perversions of the laws of the animal economy. In one respect it may have ensued from some accidental change of position experienced by the foetus at some period of its uterine existence; and, in another, it may have originated from the influence of the maternal imagination on the foetus in utero, or attributable to a primitive defect in the germ. Whilst we know and appreciate the opinions of learned physiologists, in regard to the causes of monstrosity, further deponent saith not.

J. K. Hamilton, M.D.
Death from Chloroform.

A death from chloroform occurred at Birkenhead on Thursday week last. The patient was a boy named Hughes, and the operation that was to be performed was lithotomy. The death took place previously to the performance of the operation, the boy ceasing simply to breathe, and the action of the heart ceasing almost at the same moment. The chloroform was administered with every care, and there was nothing in the condition of the patient to indicate special danger. The jury returned a verdict of death from chloroform, with an intimation that the anaesthetic "had been properly administered."

This case is very remarkable, owing to the youthful age of the deceased. It has been almost accepted as proven, that if moderate care be employed persons under fourteen years can hardly be exposed even to risk by chloroform inhalation. The fallacy of this view is now proved by a sad experience, and that which was thought to be a sequence is shown to be a coincidence. If the truth be told, neither in this fatal case, nor in the fatal case at Bristol, where the radial artery was about to be tied, need chloroform have been administered at all; unless it be proved that local anaesthesia would not have afforded every requirement for a painless procedure.—Med. Times and Gaz., Nov. 24, 1866.

Absorption of Wounds.

M. Demarquay read to the French Academy of Medicine a paper on this subject, of which the following are the chief conclusions: 1. A substance which is soluble in water, like iodide of potassium, when applied to a large denuded surface is rapidly eliminated by the saliva. 2. Applied to a recent wound, the presence of iodine is
recognized in the saliva in a period of time which varies between sixty, thirty, nineteen, and fifteen minutes. 3. When wounds are completely organized they possess great absorbing power, so that at the end of ten, eight, six, or four minutes, and even less, very evident traces of iodine are found in the saliva. We may, therefore, ask whether the septic element which gives rise to puerperal fever or erysipelas may not be absorbed by the wound itself. 4. In that dangerous complication of wounds known as purulent infection, may we not suppose that this absorbing power, which has hitherto been so little investigated, plays a considerable part, and will it not explain some of the phenomena generally attributed to phlebitis? 5. Iodine injections thrown into the cavities of abscesses or cysts are rapidly absorbed, elimination having been proved to have commenced in a period varying from forty-five to three minutes. 6. When these injections are employed in too great quantities, or too often repeated, harm may result from the incessant introduction of iodine into the system. 7. Iodine introduced by these various means is generally eliminated by the saliva and urine in from four to five days.—Ibid.

Inoculability of Tubercle.

In the Gazette Hebdomadaire we have a continuation of M. Villetmin's researches as to the inoculability of tubercle. In rabbits he has again and again succeeded in reproducing it in this manner, not only when taken from the human subject, but still more rapidly when derived from the cow; further, the tubercular matter thus produced in one rabbit could be in like manner transmitted to another, in the same way as syphilis.—Ibid.
Sudden Death in a Dentist's Office.

Last week, Edmund Kerosin, a young man, twenty-three years old, entered the office of Dr. Ralph Lee, a dentist of this city, to have a tooth extracted. Anaesthesia was produced by nitrous oxyd gas, a cork having been placed between the teeth to keep the mouth open. As the tooth was extracted, we understand, it slipped from the forceps, and with the cork was drawn into the mouth. The tooth was subsequently thrown up from the stomach, but the cork—which does not seem to have been missed—entered the larynx, and by its presence there caused suffocation and death in an hour. A post mortem revealed the presence of the cork in the larynx and the cause of death. This case and its lamentable result should serve as a caution to those who employ such adjuncts in the dental laboratory, and the physician who may be suddenly summoned to patients in a dentist's office, should bear in mind the possibility of an accident like this, and be prepared to open the larynx, if need be, which in this instance would, in all probability, have given instant relief, and saved the life of the young man. —Med. and Surg. Reporter.

Poisoning by Strychnia; Cannabis Indica.

In a recent number, we reported in our periscopic department, a case of recovery from strychnia poisoning, by means of chloroform. We now add another, which recovered under the use of cannabis indica, and tr. of camphor. The case occurred in the practice of Dr. S. A. McWilliams, of Chicago, by whom it is reported in the Med. Examiner. Patient, thirty-one years of age, took, suicidally, five grains of strychnia. Was seen by Dr. McW. three hours and forty-five minutes afterward, when
he had extensive, frequent, and severe spasms, and with each a blowing of froth from the mouth. He lay upon his back, arms extending obliquely from his body; face flushed; perspiration rolling off him; pupils dilated widely; pulse one hundred and thirty per minute; color of lips natural; stiffness of muscles and inability to move limbs; mind perfectly clear. A drachm of the tincture of cannabis indica was immediately given, and another in five minutes; then two similar doses at intervals of ten minutes; afterward two such doses at fifteen minutes interval, with a rapid amelioration of symptoms; the next drachm was given in an hour and a half. The remedy, which afterward was alternated with camphor, was continued as the urgency of the symptoms demanded, and the patient recovered, with uninterrupted convalescence, after forty-eight hours.—Ibid.

Gun-shot Wound of Heart.

Professor Hamilton presented the specimen of a case, which had already been described several years ago in the American Journal of Medical Science, but the specimen had never been presented before to this Society.

It was a heart containing a bullet, of a boy who, when fourteen years of age, received a musket ball into the right side and shoulder, at Chatham Four Corners, New York. This was in 1840. The ball could not be discovered at the time. Six weeks after the injury he returned to work, and lived until 1860—twenty years—having been married in 1845.

Five years after the receipt of the injury he was attacked with violent palpitation of the heart, the result, as far as could be ascertained, of violent exertion, from which he never entirely recovered.
When he died in 1860, the autopsy revealed the presence of a ball in the right ventricle, near its apex, surrounded by atheromatous deposit. The heart was somewhat dilated, but not hypertrophied. His last illness was ascribed to cold, the result of exposure from washing sheep in a brook.—Med. and Surg. Reporter, Dec. 15, 1866.

Minute Injection and Preservation of Anatomical Subjects.

During the past two months, Dr. Joseph Jones, Professor of Physiology and Pathology in the Medical Department of the University of Nashville, has conducted a series of experiments upon the preservation of entire bodies for purposes of dissection, and anatomical and physiological demonstration.

Dr. Jones has succeeded in preserving the entire bodies of animals, which have remained for four weeks, in a close warm room, heated with a stove, without the smallest disagreeable odor, and without any marks of decomposition.

The antiseptic agent used by Dr. Jones in his experiments, is carbolic acid: the liquid carbolic acid, as commonly sold in the shops, is mixed with the usual injecting matters, and is thrown into the blood-vessels by the ordinary process.

For the human subject, used in dissection by students, and for class demonstration, Dr. Jones employs the following method: Two mixtures are required; one to fill the capillaries and smaller vessels, and the other to distend the larger vessels. The former, which will be called

No. 1, *Preservative Fluid for Minute Injection*, consists of the following ingredients; the amounts given being sufficient to inject a single human body.

Three fluid ounces of carbolic acid; one pint of linseed.
oil (oleum lini.); one pint of oil of turpentine (oleum terebinthinæ); one ounce of best Chinese vermillion (red sulphuret of mercury, hydrargyri sulphuretum rubrum). Mix the turpentine and linseed oil, and add the carbolic acid, and stir well together; then mix in thoroughly the coloring matter. Inject this fluid mixture slowly and steadily into the arteries.

No. 2, Preservative Fluid for the Injection and Distension of the Large Arteries and Veins.

Carbolic acid, four fluid ounces; oil of turpentine, one quart; linseed oil, one quart; tallow, one pound; bees-wax, one pound. Mix the turpentine and linseed oil, heat carefully, and then add the tallow and wax; and after the complete melting and mixture of the wax and tallow, remove the vessel from the fire, and add the carbolic acid and coloring matter; stir this mixture well, and inject whilst hot, into the large blood-vessels.

This last injection forces the first fluid injection into the most delicate capillaries, and thus brings all parts of the body under the influence of the carbolic acid.

The proportion of wax and tallow in the Injection Mixture No. 2, may be increased or diminished, as the object may be to produce a harder or softer material, upon cooling; and it is best to immerse the subject in hot water, during the injection of this mixture.

The first injection should not be allowed to flow out of the arterial system.

This method is best applied to subjects designed for anatomical dissection and demonstration.

For minute anatomical injections, designed to make dried preparations, the mixture of turpentine and linseed oil is not suitable as a vehicle for the carbolic acid and coloring matters. Turpentine does not dry readily.

For dry preparations, Dr. Jones is in the habit of employing Canada balsam (Canada turpentine, balsam of fir,
terebinthina Canadensis) as a vehicle, and sulphuric ether as a solvent. The carbolic acid mixes readily with the ether and Canada balsam; and the coloring matter is well suspended. Tallow and wax may also be dissolved in the Canada turpentine by the aid of heat.

When an organ thus injected is exposed to the air, the ether evaporates rapidly, and the Canada balsam gradually dries to a hard material, enclosing the coloring matter, and filling up the blood-vessels.

The method employed by Dr. Joseph Jones, is also of great value in the preservation or embalming of bodies for transportation to a great distance, or for any other purpose. When the colored fluid is properly injected, it tends to impart a life-like appearance to the skin.

It is well known that carbolic acid arrests fermentation and putrefaction, and destroys the lower forms of vegetable and animal life.

As far as the experiments in the University of Nashville have extended, carbolic acid appears to be the best of all antiseptics for the injection of bodies designed for dissection, and must supercede, in the dissecting room, the chloride of zinc, which discolors the structures, and injures the knives; and the poisonous arsenious, and arsenic acids, which endanger the health, if not the life, of those who dissect habitually.

Dr. T. B. Buchanan, Curator of the Museum and Prosector to the Chairs of Anatomy and Surgery in the University of Nashville, is also conducting a series of experiments upon the preservation of organs and tissues, in water impregnated with carbolic acid. Such a mixture would be infinitely cheaper than alcohol, and such experiments have a high practical value. Up to the present time, the results obtained by Dr. Buchanan have been most satisfactory.—*Nashville Jour. of Med. and Surg.*
Reduction of the Subcoracoid Dislocation of Humerus.

Dr. Alexander Gordon states (Brit. and For. Med. Chir. Rev., October, 1866) that he has successfully employed, in nine consecutive cases, the following mode of reducing this dislocation:

"If the right shoulder be dislocated, I place the patient on his back, with the shoulders raised, in bed, or on a mattress laid on the floor, or on a sofa. Standing on the same side, and raising the elbow, I grasp the lower end of the right humerus; the thumb on the inner, with the fore and other fingers on the outer side, the forearm lying flexed at an acute angle, resting on the web between the thumb and fingers. I raise the arm upward and forward, so as to place it at right angles with the surface upon which the patient is lying. Besides, to have complete muscular quiescence, I tell the patient to permit the extremity to rest upon and be supported entirely by my left hand. With the right hand I feel for the head of the dislocated humerus, and press it downward and outward, either through the anterior wall of the axilla or in the axilla, moving at the same time, with the left hand, the lower end of the humerus upward and backward, with rotation chiefly inward.

"Whilst thus engaged, I have felt on several occasions a snap or jerk, so marked as to lead me to suppose, for the moment, that the dislocation was reduced. This snap or jerk is due to the head of the humerus having changed its position; for when we depress it we free it from the coracoid process, and the supra and infra-spinati muscles, being on the stretch, jerk it outward to the anterior border of the glenoid fossa. When in this position, with the fingers in the axilla, I can feel almost the whole of the upper articular surface of the humerus, which I press outward and forward; or, in other words, I lift the head
of the humerus over the inner margin of the glenoid cavity, assisting with the left by rotation and very slight extension, if necessary, when the head enters the glenoid fossa with a distinct snap."

Dr. Gordon is convinced that this mode of reduction is equally applicable to other forms of dislocation of the humerus.—Am. Jour. Med. Sciences.

A Remarkable Solvent.

It is now discovered, it appears, that if a piece of copper be dissolved in ammonia, a solvent will be obtained, not only for lignine, the most important principle of all woody fibre, such as cotton, flax, paper, etc., but also for substances derived from the animal kingdom, such as wool and silk. By the solution of any of these an excellent cement and water-proofer is said to be formed; and, what is equally important, if cotton fabrics be saturated with the solution of wool, they will be enabled to take the dyes—such as the lac dye and cochineal hitherto suited to woollen goods only. Hydriodide of ammonia, we may also observe, was long since discovered to be an equally remarkable solvent of the most refractory, or, at least, insoluble mineral substances. Now it is an interesting circumstance that ammonia, according to Van Helmont, and other old chemists and alchemists, was one of the requisite materials in the "formation of the alkahest," or "universal solvent," of the ancient sages.—Detroit Review.

—Surgeon Ebon Swift, U. S. A., is suing the Hannibal and St. Joseph Railroad for loss of his baggage. He claims $5,958 50 damages, one half of the amount being estimated to be the value of an unpublished work of his on "Veterinary Surgery," the manuscript of which was in his trunk.
A New Remedy in Erysipelas—Iodide of Potassium.

Dr. H. B. Withers, of Rantoul, Illinois, writes to the Chicago Med. Journal that he has used iodide of potassium in about thirty cases of erysipelas with perfect success. It arrested the disease in from twelve to thirty-six hours. He gives usually ten grains every two hours, observing closely the effect. As soon as the disease begins to subside, the medicine is discontinued. No external application is used, but the parts are simply kept covered and moist. The author does not recommend it as a specific, but considers it a very valuable remedy in the disease.

Organic Remains.

Among the passengers recently at St. Louis, by steamer from the Upper Missouri river, was an agent of the Smithsonian Institution at Washington, D. C., in charge of a large number of petrified organic remains for the Smithsonian Institute and the Philadelphia Academy of Natural Science.

The collection, which comprises over three hundred different kinds of small animals, extinct and living, together with bears, etc., of mammoth size, was made in Dakotah Territory, near the head of White river, by Professor Hayden.

A New Diagnostic Sign in Disease of the Kidneys.

According to M. Corlien, the odor of cubebs, asparagus, etc., can be detected only in the urine secreted by healthy kidneys; and reasoning by exclusion he maintains, that where this sign is absent, the kidneys must necessarily be diseased.—Med. Record, Feb. 15, 1867.
MEDICAL COLLEGE COMMENCEMENT,
AUGUSTA, MARCH 1, 1867.

The ceremony of conferring the Doctorate took place at the Masonic Hall, in presence of a large and appreciative audience. The Trustees and Faculty, accompanied by the Students, arrived at twelve o'clock, when the Vice President, C. F. McCay, L.L.D., took the Chair, and the meeting was opened with prayer by the Rev. Mr. Lamar. The Report of the Dean, Dr. L. A. Dugas, was then read, and, on motion, accepted; after which the Vice President felicitously extemporized words of wisdom to the Graduates, and proceeded to confer upon them the degree of Doctor of Medicine. The Rev. Dr. H. H. Tucker followed with an address of rare excellence and fine taste, fully sustaining the Reverend gentleman's high reputation as an accomplished orator. Finally, a chaste and manly valedictory address was delivered by Dr. Wm. H. Foster, of this city. The whole ceremony was effective and highly creditable to all the parties concerned.

The Class in attendance on the session just closed numbered seventy-three, of whom forty-five were from Georgia, eleven from South Carolina, eleven from Alabama, two from Texas, two from Pennsylvania, one from Virginia, and one from Florida.

The following is a list of the Graduates:

Francis L. Brooks, of Columbus, Ga.
James A. Dozier, of Columbia County, Ga.
William R. Eve, of Richmond County, Ga.
William H. Foster, of Augusta, Ga.
Thomas C. Gower, of Gainesville, Ga.
Samuel S. H. Gray, of Gainesville, Ga.
Ludy M. Henderson, of Mt. Pleasant, S. C.
Charles N. Howard, of Cusseta, Ga.
Robert T. Jennings, of Galveston, Texas.
Thomas L. Lallerstedt, of Augusta, Ga.
Thomas J. Lumpkin, of Lafayette, Ga.
Frank H. Matlack, of Downington, Pa.
James K. McWhorter, of Pickens District, S. C.
James M. Milton, of Greenville, Ala.
Thomas M. Murdock, of Burke County, Ga.
Redden J. Reid, of Bartow County, Ga.
Cornelius O. O. Roberts, of Lake City, Fla.
Richard P. Spencer, of Hicksford, Va.
Henry T. Templeton, of Laurensville, S. C.
Losson J. Turner, of Sterling, Texas.
William F. Wilson, of Hannahatchee, Ga.
PROFESSORIAL CHANGE.

Dr. I. P. Garvin having resigned the Chair of Materia Medica, Therapeutics, and Medical Jurisprudence, in the Medical College of Georgia, Dr. Wm. II. Doughty, of this city, was elected to fill the vacancy.

FACULTY OF THE MEDICAL COLLEGE OF GEORGIA, AT AUGUSTA.

I. P. GARVIN, M.D.,
Emeritus Professor of Materia Medica, etc.

L. D. FORD, M.D.,
Professor of the Theory and Practice of Medicine.

JOSEPH A. EVE, M.D.,
Professor of Obstetrics and the Diseases of Women and Infants.

L. A. DUGAS, M.D.,
Professor of the Principles and Practice of Surgery.

G. W. RAINS, M.D.,
Professor of Chemistry and Pharmacy.

EDWARD GEDDINGS, M.D.,
Professor of Physiology and Pathological Anatomy.

Desaussure FORD, M.D.,
Professor of Anatomy, general and descriptive.

WM. II. DOUGHTY, M.D.,
Professor of Materia Medica, Therapeutics, and Medical Jurisprudence.

JOHN L. COLEMAN, M.D.,
Demonstrator of Anatomy.

L. A. DUGAS, Dean.

Notice of works received will appear in our next.